Tony \& Anne Campbell 2024

 Northern Lights Traffic Impact Study Addendum 2Civilize, PLLC Management and Engineering R10

Traffic Impact Study Disclaimer

All recommendations and/or advice presented in this document regarding probably project conditions are the opinions of Civilize, PLLC. Project conditions are based on information and data sources that are readily available from the public sector, provided by the project owner, previously published studies by other competent professionals, and other reliable sources including state agencies and local municipal government entities, all of which are relied upon as accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Table of Contents

I. Executive Summary 1
A. Introduction 1

1. Background Information 1
2. Addendum 2 2
B. Development Description and Phasing 2
C. Projected Traffic 2
D. Conclusion 2
E. Existing Traffic Conditions (2024) 4
3. Existing 2024 Traffic Mitigating Measures 5
F. 2029 Buildout Year Traffic Conditions Results 5
4. 2029 Buildout Mitigating Measures 5
G. 2049 Horizon Year Traffic Conditions Results 6
5. 2049 Horizon Year Mitigating Measures 6
H. Overall Study Summary 6
II. Addendum 2 Study Approach 7
A. Full TIS or Minor TIS 7
B. Study Period 7
6. Phasing and Timing 7
C. Segments and Intersections to be Studied 8
D. Study Methodology, Limitations and Assumptions 8
7. Traffic Model 8
8. Anticipated Annual Growth 9
9. Level of Service (LOS) 9
10. Left Turn and Right Turn Lane Warrant Analysis. 12
III. Area Conditions 14
A. Study Area 14
11. Area of Influence and Significant Traffic Impact 14
IV. Existing 2024 Traffic Volumes and Conditions 15
A. Traffic Forecasting 15
B. Roadway Network 15
C. Seasonal Adjustment. 15
D. Existing 2024 Segment PM Peak Traffic Volumes 15
12. Seg 1 - Hwy 33 Existing 2024 Peak Hr Flow 15
13. Seg. 2-500W Existing 2024 PM Peak Hr Flow 17
E. Existing 2024 PM Peak Intersection Traffic Volumes 17
14. Int. $1-6500 \mathrm{~N} / 1750 \mathrm{WPeak}$ Hr Volume. 17
15. Int. $2-6500 \mathrm{~N} / 500 \mathrm{~W}$ Peak Hr Volume. 18
16. Int. $3-5750 \mathrm{~N} / 500 \mathrm{~W}$ Peak Hr Volume 18
17. Int. 4 - Hwy 33/5750N Peak Hr Volume 19
18. Int. 5 - Hwy 33/500W Peak Hr Volume 20
F. Existing 2024 Segment PM Peak Traffic Conditions 20
G. Existing 2024 Intersection PM Peak Hr Traffic Conditions 21
19. Int. $1-6500 \mathrm{~N} / 1750 \mathrm{WExisting} 2024$ PM Peak Hr Traffic Conditions 21
20. Int. $2-6500 \mathrm{~N} / 500 \mathrm{~W}$ Existing 2024 PM Peak Hr Traffic Conditions 21
21. Int. $3-5750 \mathrm{~N} / 500 \mathrm{~W}$ Existing 2024 PM Peak Hr Traffic Conditions 22
22. Int. 4 - Hwy 33/5750W Existing 2024 PM Peak Hr Traffic Conditions 22
23. Int. 5 - Hwy 33/500W Existing 2024 PM Peak Hr Traffic Conditions 23
H. Turn Lane Warrants Based on Safety Analysis of Intersections 23
24. Existing Conditions Left Turn Lane Analysis 23
25. Existing Conditions Right Turn Lane Analysis 24
I. Analysis of Existing 2024 PM Peak Hr Traffic Conditions Summary 24
26. Segments 24
27. Intersections 24
28. Turn Lane Analysis 26
29. Overall Summary for 2024 26
V. Projected Traffic 27
A. Site Traffic 27
30. Trip Generation 27
31. Trip Distribution 27
32. Modal Split 28
33. Trip Assignment 28
B. Through Traffic (Non-Site Traffic) 28
34. Non-Site Traffic for anticipated Development in Study Area 28
C. Total Traffic 29
VI. 2029 Horizon Year Traffic Analysis (Buildout) 31
A. On-Site Development 31
B. Traffic Forecasting 31
C. Roadway Network 31
D. 2029 Buildout Segment PM Peak Traffic Volumes 31
35. Segment 1: Hwy 332029 Buildout PM Peak Hr Flow 31
36. Segment 2: 500W (from Hwy 33 to 5750 N) 32
37. Intersection $1-6500 \mathrm{~N} / 1750 \mathrm{WPeak}$ Hr Volume 33
38. Intersection $2-6500 \mathrm{~N} / 500 \mathrm{~W}$ Peak Hr Volume 33
39. Intersection $3-5750 \mathrm{~N} / 500 \mathrm{~W}$ Peak Hr Volume 34
40. Intersection $4-$ Hwy 33/5750N Peak Hr Volume 34
41. Intersection 5 - Hwy 33/500W Peak Hr Volume 35
E. 2029 Buildout Segment PM Peak Traffic Conditions 35
F. 2029 Buildout Intersection PM Peak Hr Traffic Conditions 36
42. Int. $1-6500 \mathrm{~N} / 1750 \mathrm{~W} 2029$ Buildout PM Peak Hr Traffic Conditions 36
43. Int. $2-6500 \mathrm{~N} / 500 \mathrm{~W} 2029$ Buildout PM Peak Hr Traffic Conditions 37
44. Int. $3-5750 \mathrm{~N} / 500 \mathrm{~W} 2029$ Buildout PM Peak Hr Traffic Conditions 38
45. Int. 4 - Hwy 33/5750N 2029 Buildout PM Peak Hr Traffic Conditions 39
46. Int. 5 - Hwy 33/500W 2029 Buildout PM Peak Hr Traffic Conditions 40
G. Turn Lane Warrants Based on Safety Analysis of Intersections 41
47. 2029 Buildout Conditions Left Turn Lane Analysis 41
48. 2029 Buildout Conditions Right Turn Lane Analysis. 41
H. Analysis of 2029 Buildout PM Peak Hr Traffic Conditions Summary 41
49. Segments 41
50. Intersections 42
51. Turn Lane Analysis 44
52. Review of the 2024 Existing Conditions 45
53. Overall Summary for the 2029 Buildout Conditions 45
VII. 2049 Horizon Year Traffic Analysis 46
A. On-Site Development 46
B. Traffic Forecasting 46
C. Roadway Network 46
D. 2049 Horizon Year Segment PM Peak Traffic Volumes 46
54. Segment 1: Hwy 332049 Horizon Year PM Peak Hr Flow 46
55. Segment 2: 500W (from Hwy 33 to 5750N) 47
56. Intersection $1-6500 \mathrm{~N} / 1750 \mathrm{WPeak}$ Hr Volume 48
57. Intersection $2-6500 \mathrm{~N} / 500 \mathrm{~W}$ Peak Hr Volume 49
58. Intersection $3-5750 \mathrm{~N} / 500 \mathrm{~W}$ Peak Hr Volume 49
59. Intersection $4-$ Hwy 33/5750N Peak Hr Volume 50
60. Intersection 5 - Hwy 33/500W Peak Hr Volume 50
E. 2049 Horizon Year Segment PM Peak Traffic Conditions 51
F. 2049 Horizon Year Intersection PM Peak Hr Traffic Conditions 51
61. Int. 1 - $6500 \mathrm{~N} / 1750 \mathrm{~W} 2049$ Horizon Year PM Peak Hr Traffic Conditions 52
62. Int. $2-6500 \mathrm{~N} / 500 \mathrm{~W} 2049$ Horizon Year PM Peak Hr Traffic Conditions 53
63. Int. $3-5750 \mathrm{~N} / 500 \mathrm{~W} 2049$ Horizon Year PM Peak Hr Traffic Conditions 54
64. Int. 4 - Hwy 33/5750N 2049 Horizon Year PM Peak Hr Traffic Conditions 55
65. Int. 5 - Hwy 33/500W 2049 Horizon Year PM Peak Hr Traffic Conditions 56
G. Turn Lane Warrants Based on Safety Analysis of Intersections 57
66. 2049 Horizon Year Conditions Left Turn Lane Analysis 57
67. 2049 Horizon Year Conditions Right Turn Lane Analysis 57
H. Analysis of 2049 Horizon Year PM Peak Hr Traffic Conditions Summary 57
68. Segments 57
69. Intersections 57
70. Turn Lane Analysis 60
71. Review of the 2024 Existing Conditions 60
72. Review of the 2029 Buildout Conditions 61
73. Overall Summary for the 2049 Horizon Year Conditions 61
VIII. Conclusions. 62
A. Existing Traffic Conditions (2024) 64
74. Existing 2024 Traffic Mitigating Measures 64
B. 2029 Buildout Year Traffic Conditions Results 64
75. 2029 Buildout Mitigating Measures 64
C. 2049 Horizon Year Traffic Conditions Results 64
76. 2049 Horizon Year Mitigating Measures 64
D. Overall Study Summary 64
IX. Appendix A: Site Master Plan 65
X. Appendix B: Traffic Counts 66
XI. Appendix C: 2024 Existing Conditions Traffic Model Results 73
XII. Appendix D: 2029 Buildout Traffic Model Results 78
XIII. Appendix E: 2049 Horizon Year Traffic Analysis 88
XIV. Appendix F: Left Turn Lane Warrant Analyses 98
XV. Appendix G: Right Turn Lane Warrant Analyses 100
XVI. Appendix H: Segment LOS Calculations 102
Table of Figures
Figure 1 - Segment: Six (6) Levels of LOS 11
Figure 2 - Left-Turn Warrant Chart 12
Figure 3 - Right-Turn Warrant Chart 13
Figure 4 - Area of Influence 14
Figure 5: Hwy 33 ATR Locations 16
Figure 6: Hwy 33 Mileposts and ADT 16
Figure 7: Existing 2024 Conditions 6500N/1750WPM Peak Hr Volume 18
Figure 8: Existing 2024 Conditions 6500N/500W PM Peak Hr Volume 18
Figure 9: Existing 2024 Conditions 5750N/500W PM Peak Hr Volume 19
Figure 10: Existing 2024 Conditions Hwy 33/5750N PM Peak Hr Volume 19
Figure 11: Existing 2024 Conditions Hwy 33/500W PM Peak Hr Volume 20
Figure 12- Intersection 1 6500N/1750WPM Peak Generated Traffic 29
Figure 13- Intersection 2 6500N/500W PM Peak Generated Traffic 29
Figure 14- Intersection 3 5750N/500W PM Peak Generated Traffic 30
Figure 15- Intersection 4 Hwy 33/5750N PM Peak Generated Traffic 30
Figure 16- Intersection 5 Hwy 33/500W PM Peak Generated Traffic 30
Figure 17: 6500N/1750W2029 Traffic Volumes without and with the Development 33
Figure 18: 6500N/500W 2029 Traffic Volumes without and with the Development 33
Figure 19: 5750N/500W 2029 Traffic Volumes without and with the Development 34
Figure 20: Hwy 33/5750N 2029 Traffic Volumes without and with the Development 34
Figure 21: Hwy 33/500W 2029 Traffic Volumes without and with the Development 35
Figure 22: 6500N/1750W 2049 Traffic Volumes without and with the Development 48
Figure 23: 6500N/500W 2049 Traffic Volumes without and with the Development 49
Figure 24: 5750N/500W 2049 Traffic Volumes without and with the Development 49
Figure 25: Hwy 33/5750N 2049 Traffic Volumes without and with the Development 50
Figure 26: Hwy 33/500W 2049 Traffic Volumes without and with the Development 50
Table of Tables
Table 1- Segment Traffic Conditions Progression Each Horizon Year 3
Table 2- Intersection Traffic Conditions Progression Each Horizon Year 3
Table 3- Left and Right Turn Lane Progression Each Horizon Year 4
Table 4 - LOS Criteria for General Two-Lane Highway Segments 10
Table 5 - LOS Criteria for General Two-Lane Highway Segments 11
Table 6 - Control Delay per Vehicle to LOS Correlation Table 12
Table 7 Existing Segment ADT, Peak Hour, and Trip Distribution Volumes 17
Table 8 -Existing 2024 Segments PM Traffic LOS 20
Table 9 -Int. 1 - Existing (2024) Peak Hr MOEs 21
Table 10 -Int. 2 - Existing (2024) Peak Hr MOEs 22
Table 11 -Int. 3 - Existing (2024) Peak Hr MOEs 22
Table 12 -Int. 4 - Existing (2024) Peak Hr MOEs 23
Table 13 -Int. 5 - Existing (2024) Peak Hr MOEs 23
Table 14 -Existing 2024 Segments Traffic Condition Summary 24
Table 15 -Int. 1 Existing 2024 Intersections Traffic Condition Summary 25
Table 16 -Int. 2 Existing 2024 Intersections Traffic Condition Summary 25
Table 17 -Int. 3 Existing 2024 Intersections Traffic Condition Summary 25
Table 18 -Int. 4 Existing 2024 Intersections Traffic Condition Summary 25
Table 19 -Int. 5 Existing 2024 Intersections Traffic Condition Summary 25
Table 20- Land Use and Trip Generation (ADT) for Buildout (2029) 27
Table 21- Land Use and Trip Generation (Peak Hour) for Buildout (2029) 27
Table 22- Trip Distribution (ADT) for Buildout (2029) 28
Table 23- Trip Distribution (Peak Hour) for Buildout (2029) 28
Table 24 - Seg 1: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development 32
Table 25 - Seg 1: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development 32
Table 26 - Seg 2: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development 32
Table 27 - Seg 2: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development 32
Table 28 -2029 Buildout Segments PM Traffic LOS 35
Table 29 -Int. 1 - 2029 Buildout Peak Hr MOEs Without the Development 36
Table 30 -Int. 1 - 2029 Buildout Peak Hr MOEs With the Development 37
Table 31 -Int. 2 - 2029 Buildout Peak Hr MOEs Without the Development 37
Table 32 -Int. 2 - 2029 Buildout Peak Hr MOEs With the Development 38
Table 33 -Int. 3 - 2029 Buildout Peak Hr MOEs Without the Development 38
Table 34 -Int. 3 - 2029 Buildout Peak Hr MOEs With the Development 39
Table 35 -Int. 4 - 2029 Buildout Peak Hr MOEs Without the Development 39
Table 36 -Int. 4 - 2029 Buildout Peak Hr MOEs With the Development 40
Table 37 -Int. 5 - 2029 Buildout Peak Hr MOEs Without the Development 40
Table 38 -Int. 5 - 2029 Buildout Peak Hr MOEs With the Development 41
Table 39-2029 Buildout Segments Traffic Condition Summary 42
Table 40 -Int. 12029 Buildout Intersection Traffic Condition Summary without and with the development 42
Table 41 -Int. 22029 Buildout Intersection Traffic Condition Summary without and with the development 43
Table 42 -Int. 32029 Buildout Intersection Traffic Condition Summary without and with the development 43
Table 43 -Int. 42029 Buildout Intersection Traffic Condition Summary without and with the development 44
Table 44 -Int. 52029 Buildout Intersection Traffic Condition Summary without and with the development 44
Table 45 - Seg 1: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development 47
Table 46 - Seg 1: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development 47
Table 47 - Seg 2: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development 47
Table 48 - Seg 2: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development 48
Table 49-2049 Horizon Year Segments PM Traffic LOS 51
Table 50 -Int. 1 - 2049 Horizon Year Peak Hr MOEs Without the Development 52
Table 51 -Int. 1 - 2049 Horizon Year Peak Hr MOEs With the Development 52
Table 52 -Int. 2 - 2049 Horizon Year Peak Hr MOEs Without the Development 53
Table 53 -Int. 2 - 2049 Horizon Year Peak Hr MOEs With the Development 53
Table 54 -Int. 3 - 2049 Horizon Year Peak Hr MOEs Without the Development 54
Table 55 -Int. 3 - 2049 Horizon Year Peak Hr MOEs With the Development 54
Table 56 -Int. 4 - 2049 Horizon Year Peak Hr MOEs Without the Development 55
Table 57 -Int. 4 - 2049 Horizon Year Peak Hr MOEs With the Development 55
Table 58 -Int. 5 - 2049 Horizon Year Peak Hr MOEs Without the Development 56
Table 59 -Int. 5 - 2049 Horizon Year Peak Hr MOEs With the Development 56
Table 60 - 2049 Horizon Year Segments Traffic Condition Summary 57
Table 61 -Int. 12049 Horizon Year Intersection Traffic Condition Summary without and with the development 58
Table 62 -Int. 22049 Horizon Year Intersection Traffic Condition Summary without and with the development 58
Table 63 -Int. 32049 Horizon Year Intersection Traffic Condition Summary without and with the development 59
Table 64 -Int. 42049 Horizon Year Intersection Traffic Condition Summary without and with the development 59
Table 65 -Int. 52049 Horizon Year Intersection Traffic Condition Summary without and with the development 60
Table 66- Segment Traffic Conditions Progression Each Horizon Year 62
Table 67- Intersection Traffic Conditions Progression Each Horizon Year 62
Table 68- Left and Right Turn Lane Progression Each Horizon Year 63

TRAFFIC IMPACT ANALYSIS Northern Lights Addendum 2

I. Executive Summary

A. Introduction

1. Background Information

The original Traffic Impact Analysis (TIS) for the Northern Lights development northwest of Tetonia, Idaho was prepared in accordance with the Requirements for Transportation Impact Studies which is a supplement to the Idaho Transportation Department Board Policy B-12-06. At the presentation of the project to the Teton County Board of County Commissioners (BOCC), the BOCC questioned some of the assumptions used in the original TIS, principally, the route motorists would likely use traveling to and from the development to Hwy. 33 and to the City of Driggs. Consequently, the development was denied, with one of the reasons for denial the perceived inadequacy of the county roads to provide for traffic from the proposed development. Various events have occurred since that original public hearing before the BOCC in August of 2023 which have led to circumstances wherein the project is being reconsidered by the BOCC. The BOCC reconsidered the preliminary plat submittal on February 26, 2024, and made a motion to continue the public hearing. The specific language of the motion as extracted from the approved meeting minutes states:

Continue the public hearing for Northern Lights Subdivision Preliminary Plat to May 6, 2024 at 1 PM in order to obtain a revised traffic study to evaluate traffic impacts with the actual primary route being Hatches Corner to 500 W to 6500 N from the applicant.

As a result of the motion, the Applicant has revisited the assumptions used in the original TIS regarding the primary route traffic would likely utilize to access the proposed development from Hwy. 33. The Engineer visited with both the Teton County Engineer and the ITD Traffic Engineer regarding a reasonable approach to determining the allocation of traffic among the available routes to access Hwy 33. Consequently, the Engineer performed traffic counts during the P.M. Peak hour at the intersection of 1750 West and 6500 North on two separate occasions to ascertain the predilection of existing motorists regarding the preferred route to access Hwy 33. On neither occasion did any traffic north of the intersection utilize 6500 North to access Hwy 33, rather, all of the existing traffic generated or returning from destinations north the 1750 West/6500 North intersection used the 2000 West/Hwy 33 intersection.

a. Existing Traffic Patterns at the 1750 West/6500 North Intersection

Because the observed existing traffic patterns at the 1750 West/6500 North intersection used the 2000 West/Hwy 33 intersection to access Hwy 33, the assumptions in the original TIS are consistent with observed existing traffic. Generally, motorists prefer the most direct route when presented with alternatives to access roads with higher modality in a road network. Therefore, the Engineer prepared an
addendum (Addendum 1) to the original TIS updating the traffic counts for the intersections analyzed in the original TIS.

Because of the language in the motion to continue the public hearing, the Engineer also modeled the traffic generated by the proposed development as if all of the motorists selected the intersection referenced in the motion to access Hwy 33, namely the 500 West/Hwy 33 intersection which is known as Hatch's Corner. The modeling data and resulting analysis are presented as Addendum 2.

2. Addendum 2

Civilize, PLLC has been retained to update the 2022 Traffic Impact Study for the Northern Lights project in accordance with the requirements of Teton County.
Addendum 2 adds to the compendium of information developed germane to existing and proposed traffic patterns on the existing road network in the vicinity of the proposed development by modeling and analyzing the intersections of $500 \mathrm{West} / 6500$ North and 500 West/Hwy 33. For Addendum 2, as with Addendum 1, the traffic counts have been updated to reflect 2024 values. For information regarding the proposed development, reference the original 2022 TIS for the project identification, location, applicable regulations, purpose of report and study objectives, proposed development characteristics, zoning, site plan, land use and intensity, site accessibility, access management, area transportation elements and roadway system, and accident history.

B. Development Description and Phasing

The projected land use for the build-out year of the proposed development is comprised of 17 main dwelling units and 17 accessory dwelling units (34 units total).

This traffic impact study evaluates the existing transportation conditions, the buildout condition, and a horizon year 20 years beyond the buildout year. The following analyses were performed:
>2024 existing background traffic
> 2029 buildout year background traffic
> 2029 buildout year background plus site traffic
> 2049 horizon year background traffic
> 2049 buildout year background plus site traffic

C. Projected Traffic

The build-out conditions are expected to generate approximately 325 trips for the MADT and 26 trips during PM peak hour by the year 2027.

D. Conclusion

After evaluating the proposed development within the context of zoning; projected land use; existing transportation system; background traffic counts for the principal roadways within the study impact area; projected traffic for horizon years corresponding with project opening, project buildout, and a 20 -year horizon year; the findings of the Traffic Impact Study are summarized below. In order to simplify the forecasted traffic conditions as they have progressed through this study, the following three (3) tables were produced. The first table shows the forecasted progression of the roadway segments, the second Civilize, PLLC
table shows the intersections, and the third shows the left or right turn lanes. It should be noted by constructing the left turn lane or TWLTL at Intersection 5 for safety for the 2024 existing conditions, the LOS improved for the 2029 buildout year.

Table 1- Segment Traffic Conditions Progression Each Horizon Year

Segment 1	2024 (Existing)		2029 Buildout		2049 Horizon	
Hwy 33	Value	LOS	Value	LOS	Value	LOS
FFS (mph)	63.25	n / a	63.25	n / a	63.25	n / a
ATS (mph)	54.48	B	53.5	B	49.97	C
PTSF (\%)	53.1%	B	57.2%	C	77.0%	D
v/c Ratio	0.2	B	0.24	C	0.41	D

Segment 2	2024 (Existing)		2029 Buildout		2049 Horizon	
2000S (from Hwy 33 to 5750N)	Value	LOS	Value	LOS	Value	LOS
FFS (mph)	40	n / a	40	n / a	40	n / a
PFFS (\%)	97.1%	A	95.3%	A	92.4%	A
v/c Ratio	0.04	A	0.07	A	0.11	A

Table 2- Intersection Traffic Conditions Progression Each Horizon Year

Int 1: 6500N/1750W	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	n / a	A	A	A
2029 Background Traffic	n / a	A	A	A
2029 Background plus Site Traffic	n / a	A	A	A
2049 Background Traffic	n / a	A	A	A
2049 Background plus Site Traffic	n / a	A	A	A

Int 2: 6500N/500w	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	A	n / a	A	A
2029 Background Traffic	A	n / a	A	A
2029 Background plus Site Traffic	A	n / a	A	A
2049 Background Traffic	A	n / a	A	A
2049 Background plus Site Traffic	A	n / a	A	A

Int 3: 5750N/500w	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	A	A	A	A
2029 Background Traffic	A	A	A	A
2029 Background plus Site Traffic	A	A	A	A
2049 Background Traffic	A	A	A	A
2049 Background plus Site Traffic	A	A	A	A

Int 4: Hwy 33/5750N	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	A	A	n / a	B
2029 Background Traffic	A	A	n / a	B
2029 Background plus Site Traffic	A	A	n / a	B
2049 Background Traffic	A	A	n / a	C
2049 Background plus Site Traffic	A	A	n / a	C

Int 5: Hwy 33/500W	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	n / a	C	A	A
2029 Background Traffic	n / a	B	A	A
2029 Background plus Site Traffic	n / a	B	A	A
2049 Background Traffic	n / a	C	A	A
2049 Background plus Site Traffic	n / a	C	A	B

Table 3- Left and Right Turn Lane Progression Each Horizon Year

Int 4: Hwy 33/5750N	Left Turn Lane		Right Turn Lane	
	Eastbound	Westbound	Eastbound	Westbound
2024 Existing Traffic	Warranted	n / a	n / a	Not Warranted
2029 Background Traffic	Warranted	n / a	n / a	Not Warranted
2029 Background plus Site Traffic	Warranted	n / a	n / a	Not Warranted
2049 Background Traffic	Warranted	n / a	n / a	Not Warranted
2049 Background plus Site Traffic	Warranted	n / a	n / a	Not Warranted

Int 5: Hwy 33/500N		Left Turn Lane		Right Turn Lane	
		Southbound	Northbound	Southbound	
2024 Existing Traffic	n / a	Warranted	Warranted	n / a	
2029 Background Traffic	n / a	Warranted	Warranted	n / a	
2029 Background plus Site Traffic	n / a	Warranted	Warranted	n / a	
2049 Background Traffic	n / a	Warranted	Warranted	n / a	
2049 Background plus Site Traffic	n / a	Warranted	Warranted	n / a	

E. Existing Traffic Conditions (2024)

The existing traffic conditions were analyzed with the existing intersection control and lane configurations. For the existing traffic conditions, all the road segments and intersections are operating within minimum operational thresholds except:

* Int. 4 Hwy 33/5750W: Eastbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Southbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Northbound right-turning traffic exceeds the minimum safety levels

1. Existing 2024 Traffic Mitigating Measures

To mitigate for existing traffic conditions, the Hwy 33/500W intersection should be improved. It is recommended that a left turn lane or a two way left turn lane (TWLTL) be constructed on Hwy 33 at both intersections 4 and 5. Additionally, it is recommended that a right turn lane be constructed at Intersection 5 to accommodate the existing 2024 traffic safely.

F. 2029 Buildout Year Traffic Conditions Results

All segment capacity and intersection delay times/LOS are projected to operate within the minimum allowable operational thresholds for the 2029 buildout year.

1. 2029 Buildout Mitigating Measures

Assuming the responsible parties construct the recommended improvements to mitigate for existing condition, there are no additional deficiencies forecasted for the 2029 Buildout conditions, therefore no mitigation measures are recommended.

G. 2049 Horizon Year Traffic Conditions Results

All segment capacity and intersection delay times/LOS are projected to operate within the minimum allowable operational thresholds for the 2049 horizon year.

1. 2049 Horizon Year Mitigating Measures

For the 2049 planning horizon, the traffic for the proposed development becomes part of the background traffic. For the 2049 horizon year scenario no deficiencies were forecasted, therefore no mitigation measures are recommended.

H. Overall Study Summary

From the data and analysis presented above, the development is forecasted to have negligible impact to the traffic network within the study area. All segments are forecasted to operate below the allowable operation thresholds throughout the study time period. All intersections are forecasted to operate below the allowable operation thresholds throughout the study time period with or without the development.

Although the traffic is forecasted to operate at an acceptable level, in order to meet ITD's minimum safety guidelines on Hwy 33, left turns lanes or a two way left turn lane (TWLTL) for both intersections 4 and 5 along with a right turn lane at Intersection 5 is warranted with or without the development.

II. Addendum 2 Study Approach

Addendum 2 is a scenario where 100% of the traffic generated by the proposed development travels south on 1750 W to 6500 N , turns left and travels east to 500 W , and then travels south to Hwy 33.

A. Full TIS or Minor TIS

The scope of this TIS is based on ITD's Requirements for Transportation Impact Studies (Supplement to Board Policy B-12-06) as well as the guidance document titled Transportation Impact Analyses for Site Development. published by the Institute of Transportation Engineers (ITE). These requirements outline a full or minor TIS as:

- A full TIS shall be required for development that will generate more than 100 vph or 1000 vpd .
- A minor TIS is required for development that will generate up to 99 vph or 999 vpd.

This development is forecasted to generate less than 99 vph , and less than 999 vpd , thus a minor TIS will be performed. Since this is determined to be a minor TIS, only the pm peak hour will be analyzed as recommended by the Requirements for Transportation Impact Studies by ITD

B. Study Period

The following study periods were identified for analysis:

1. 2024 (Existing)
2. 2029 (Project Buildout)
3. 2049 (20-Year Horizon)

The following time intervals were identified for analysis:

1. Weekend PM peak hour

1. Phasing and Timing

a. Existing Conditions

The traffic counts were obtained in March of 2024. The existing condition year will be considered 2024.

b. Buildout Conditions

It is estimated that buildout will occur in five (5) years. The buildout conditions will be considered for 2029

c. 20-Year Horizon Year

The 20 -year longer term traffic conditions occur 20 years after buildout. Therefore, the 20-year horizon year will be projected to year 2049. As mentioned earlier, this TIS will not consider additional traffic that may be generated from unknown development within the study area.

C. Segments and Intersections to be Studied

It has been identified that the following intersections will be evaluated for Addendum 2 with the most recent traffic counts:

1. Segment 1 - Hwy 33 (from Intersection $6,1 / 2$ mile each direction)
2. Segment $2-500 \mathrm{~W}$ (from Hwy 33 to 5750 N)
3. Intersection $1-6500 \mathrm{~N} / 1750 \mathrm{~W}$
4. Intersection $2-6500 \mathrm{~N} / 500 \mathrm{~W}$
5. Intersection $3-5750 \mathrm{~N} / 500 \mathrm{~W}$
6. Intersection 4 - Hwy $33 / 5750 \mathrm{~N}$
7. Intersection 5 - Hwy $33 / 500 \mathrm{~W}$

It should be noted that the intersections of Hwy 33/2000W, $7000 \mathrm{~N} / 1750 \mathrm{~W}$, and the two (2) entrances to the proposed subdivision were modeled in the original 2022 TIS and updated in Addendum 1.

D. Study Methodology, Limitations and Assumptions

1. Traffic Model

The data gathered will be entered into the Synchro Traffic Modeling Software Version 11. The traffic volumes (in vehicles per hour) during the pm peak hour will be entered into the traffic model. The following steps will be followed in this TIS:

1. PM peak traffic using Intersection $1,6500 \mathrm{~N} / 1750 \mathrm{~W}$, will be visually counted
2. PM peak traffic using Intersection $2,6500 \mathrm{~N} / 500 \mathrm{~W}$, will be visually counted
3. PM peak traffic using Intersection $3,5750 \mathrm{~N} / 500 \mathrm{~W}$, will be visually counted
4. PM peak traffic using Intersection 2, Hwy $33 / 5750 \mathrm{~N}$, will be visually counted
5. PM peak traffic using Intersection 3 , Hwy $33 / 500 \mathrm{~W}$, will be visually counted
6. Hwy 33 data will be obtained from ITD
7. Since the data was visually collected out of peak season, the visual data will be seasonally adjusted to the peak month to match the data from ITD
8. The adjusted volumes will be entered into a model for the 2024 existing conditions to establish a baseline
9. The proposed development will be analyzed to determine the projected generated traffic
10. A growth factor will be multiplied to the 2024 existing volumes to determine the forecasted 2029 traffic volumes and conditions without the development
11. The projected generated traffic from the development will be added to the 2029 forecasted traffic volumes to determine the forecasted 2029 traffic volumes and conditions with the development
12. The growth factor will be multiplied to the 2024 existing volumes to determine the forecasted 2049 (20-years after anticipated buildout) traffic volumes and conditions without the development
13. The projected generated traffic from the development will be added to the 2049 forecasted traffic volumes to determine the forecasted 2049 traffic volumes and conditions with the development
14. If a poor Level of Service (LOS) is determined, mitigation measure will be discussed to improve the LOS

Along with entering in the traffic volumes into the model, a peak hour factor, as recommended by the Highway Capacity Manual HCM for rural roadways, of 0.88 and a 5% heavy vehicle factor will be used.

2. Anticipated Annual Growth

The growth will be based on the historical increase in traffic that the ITD has collected. This data show that in 2002 the ADT was 1951 vpd and the in 2023 the ADT was 3405 vpd . Using the population growth formula of $\mathrm{P}=\mathrm{P}^{*}\left(\exp \left(\mathrm{e}^{\text {rt }}\right)\right)$, we get an annual average increase of 2.78%. This increase will be used throughout this study.

3. Level of Service (LOS)

The LOS helps to determine when improvements are needed. The following sections discuss the difference between the segment and intersection LOS.

a. Segment LOS

The HCM defines the LOS as a quantitative stratification of a performance measure or measures representing the quality of service. The HCM defines six levels of service, ranging from A to F; LOS A represents the best operating conditions from the traveler's perspective, and LOS F is the most unfavorable. It is common practice to consider the LOS of A to D as acceptable with a LOS of E or F as unacceptable. For each rural roadway class (I, II, and III), the HCM measures for calculating the LOS are:

- Class I Roadway - Average Travel Speed (ATS) and Percent Time Spent Following (PTSF)
- Class II Roadway - Percent Time Spent Following (PTSF)
- Class III Roadway - Percent of Free Flow Speed (PFFS)
(1) Roadway Classification

Hwy 33 is considered a Class I two-lane highway and 500 W is considered a Class III two-lane highway.

(2) Percent of free-flow speed (PFFS)

The PFFS represents the ability of vehicles to travel at or near the posted speed limit. The PFFS is a function of the Average Travel Speed (ATS), which is the average travel speed for vehicles to traverse the roadway during the analysis period, and the Free Flow Speed (FFS) which is the desired speed of drivers in low volume conditions and the absence of traffic control devices.
(3) Free Flow Speed (FFS)

The equation for the Free Flow Speed (FFS) is:

$$
F F S=B F F S-F_{L S}-F_{A}(\text { Equation } 15-2 \text { in the } \mathrm{HCM}) .
$$

The variables in the equation are:

- BFFS - base free flow speed (the speed limit plus 10 mph)
- $\mathrm{F}_{\text {LS }}$ - adjusted lane and shoulder width (from the HCM Exhibit 15-7)
- F_{A} - adjustment for access point density (from the HCM Exhibit 15.8)

(4) Average Travel Speed (ATS)

The first step is to calculate the demand flow rate for both the analysis and the opposing direction.
The equation used is Equation 15-3 from the HCM which is the following:

$$
V_{i, a t s}=\frac{V_{i}}{P H F * f_{g, a t s} * f_{h v, a t s}}(\text { Equation 15-3 in the HCM })
$$

The variables in this equation are:

- $\quad \mathrm{V}_{\mathrm{i}}$ (demand volume)
- PHF (peak hour factor from HCM Exhibit 15-5)
- $\mathrm{F}_{\mathrm{g}, \mathrm{ats}}$ (grade adjustment from HCM Exhibit 15-9)
- $\mathrm{F}_{\mathrm{hv}, \text { ats }}$ (heavy vehicle adjustment, using HCM Equation 15-4)
(5) PFFS Results

Lastly, the PFFS is calculated by dividing the ATS by the FFS.

$$
P F F S=\frac{A T S}{F F S}
$$

(6) LOS Results

The LOS correlation for the resulting Class III highway is shown in the following table which is from Exhibit 15-3 of the HCM.

Table 4 - LOS Criteria for General Two-Lane Highway Segments

Exhibit 15-3
Motorized Vehicle LOS for Two-Lane Highways

LOS	Class I Highways		Class II Highways PTSF (\%)	Class III Highways PFFS (\%)
A	>55	≤ 35	≤ 40	>91.7
B	>50-55	>35-50	>40-55	>83.3-91.7
C	$>45-50$	>50-65	>55-70	>75.0-83.3
D	>40-45	>65-80	> $70-85$	>66.7-75.0
E	≤ 40	>80	>85	≤ 66.7
F	Demand exceeds capacity			

(7) Volume-to-Capacity Ratio (v/c ratio)

In addition to the explanation above in regard to segment LOS, the v/c ratio is also a performance measure that can be used. In order to determine the v / c ratio, we divide the volume of the roadway by the capacity. According to the Highway Capacity Manual, the capacity of a two-lane highway is 1,700 vehicles per hour for each direction of travel. By dividing the peak hour by the peak hour capacity, we get a v/c ratio. The following table shows the correlation between the v/c ratio and the LOS.

Table 5 - LOS Criteria for General Two-Lane Highway Segments

$\begin{gathered} \text { \% Time } \\ \text { LOS } \begin{array}{c} \text { Delay } \end{array} \\ \hline \end{gathered}$		V/C Ratio ${ }^{\text {a }}$																					
		Level Terrain							Rolling Terrain							Mountainous Terrain							
		Avg. ${ }^{\text {. }}$ Speed	\% No-Passing Zone						$\begin{aligned} & \text { Avg. }{ }^{\text {b }} \\ & \text { Speed } \end{aligned}$	\% No-Passing Zone						Avg. ${ }^{\text {. }}$ Speed	\% No-Passing Zone						
		0	20	40	60	80	100	0		20	40	60	80	100	0		20	40	60	80	100		
A	≤ 30		258	0.15	0.12	0.09	0.07	0.05	0.04	≥ 57	0.15	0.10	0.07	0.05	0.04	0.03	≥ 56	0.14	0.09	0.07	0.04	0.02	0.01
B	≤ 45	≥ 55	0.27	0.24	0.21	0.19	0.17	0.16	254	0.26	0.23	0.19	0.17	0.15	0.13	≥ 54	0.25	0.20	0.16	0.13	0.12	0.10	
C	≤ 60	≥ 52	0.43	0.39	0.36	0.34	0.33	0.32	≥ 51	0.42	0.39	0.35	0.32	0.30	0.28	≥ 49	0.39	0.33	0.28	0.23	0.20	0.16	
D	≤ 75	≥ 50	0.64	0.62	0.60	0.59	0.58	0.57	≥ 49	0.62	0.57	0.52	0.48	0.46	0.43	≥ 45	0.58	0.50	0.45	0.40	0.37	0.33	
E	> 75	245	1.00	1.00	1.00	1.00	1.00	1.00	≥ 40	0.97	0.94	0.92	0.91	0.90	0.90	≥ 35	0.91	0.87	0.84	0.82	0.80	0.78	
F	100	<45	-	--	--	--	--	--	<40	--	--	-	--	--	--	< 35	--	--	--	--	-	-	

The following figure helps define each of the six (6) segment LOS levels. When a LOS decreases to a LOS of E , mitigation measures/improvements are recommended.

Figure 1 -Segment: Six (6) Levels of LOS

b. Intersection LOS

The LOS for an intersection is determined by the control delay per vehicle. The LOS is broken down into six (6) categories A through F; A being the best, F being the worst and E being the start of failure. In other words, when a LOS decreases from a D to an E , improvements are recommended. The following bulleted items and table break down the six (6) categories and show the correlation between the delay time and a LOS.

- LOS A: The intersection has no congestion, has less than a 10 -second control delay per vehicle, and is operating below 55% capacity.
- LOS B: The intersection has very little congestion, has a control delay per vehicle between 10 and 15 seconds, and is operating between 55% and 64% capacity.
- LOS C: The intersection has no major congestion, has a control delay per vehicle between 15 and 25 seconds, and is operating between 64% and 73% capacity.
- LOS D: The intersection normally has no congestion, has a control delay per vehicle between 25 and 35 seconds, and is operating between 73% and 82% capacity.
- LOS E: The intersection is right on the verge of congested conditions, has a control delay per vehicle between 35 and 50 seconds, and is operating between 82% and 91% capacity.
- LOS F: The intersection is over capacity and experiences congestion, has a control delay per vehicle between 50 seconds or more, and is operating between 91% and 100% capacity.

Table 6-Control Delay per Vehicle to LOS Correlation Table

Control Delay Per Vehicle (s)	LOS
≤ 10	A
10 to 15	B
15 to 25	C
25 to 35	D
35 to 50	E
>50	F

4. Left Turn and Right Turn Lane Warrant Analysis

The left-hand turn and right-hand turn lane warrants are analyzed following the guidance found in ITD's Traffic Manual: Idaho's Supplementary Guide to the MUTCD, which references NCHRP Report 745 -Left-Turn Accommodations at Unsignalized Intersections. In addition, the NCHRP 457 - Evaluating Intersection Improvements: An Engineering Study Guide was utilized for right-turn movements. The following figures show the left-turn and right-turn warrant charts for intersections on a two-lane rural highway.

Figure 2 - Left-Turn Warrant Chart

Figure 3 - Right-Turn Warrant Chart

III. Area Conditions

A. Study Area

1. Area of Influence and Significant Traffic Impact

The area of influence for this analysis includes the following roadway segments and intersections.

1. Segment 1 - Hwy 33 (from Intersection $6,1 / 2$ mile each direction)
2. Segment $2-500 \mathrm{~W}$ (from Hwy 33 to 5750 N)
3. Intersection $1-6500 \mathrm{~N} / 1750 \mathrm{~W}$
4. Intersection $2-6500 \mathrm{~N} / 500 \mathrm{~W}$
5. Intersection $3-5750 \mathrm{~N} / 500 \mathrm{~W}$
6. Intersection 4 - Hwy $33 / 5750 \mathrm{~N}$
7. Intersection $5-$ Hwy $33 / 500 \mathrm{~W}$

The area of influence is presented in the following figure.

Figure 4 - Area of Influence

IV. Existing 2024 Traffic Volumes and Conditions

A. Traffic Forecasting

There are diverse ways to forecast future traffic flow and patterns. A common forecasting method is to take the historic population and forecast the traffic from those values. However, in this situation, recreation and tourism is a major factor, therefore using traffic data trends from ITD traffic counts will provide more satisfactory results from which to draw conclusions and make recommendations for mitigation. This study will use traffic data obtained from the ITD to determine traffic conditions for the 2024 (existing), 2029 (Project buildout), and the 2049 (20-year after buildout) horizon years.

B. Roadway Network

Within the area of influence there will be two (2) roadway segments and five (5) existing intersections that will be studied. The segments and the intersections that will analyzed are:

1. Segment 1 - Hwy 33 (from Intersection $6,1 / 2$ mile each direction)
2. Segment $2-500 \mathrm{~W}$ (from Hwy 33 to 5750 N)
3. Intersection $1-6500 \mathrm{~N} / 1750 \mathrm{~W}$
4. Intersection $2-6500 \mathrm{~N} / 500 \mathrm{~W}$
5. Intersection $3-5750 \mathrm{~N} / 500 \mathrm{~W}$
6. Intersection 4 - Hwy $33 / 5750 \mathrm{~N}$
7. Intersection 5 - Hwy $33 / 500 \mathrm{~W}$

C. Seasonal Adjustment

As a recreational destination, the traffic volumes fluctuate throughout the year with the summer months exhibiting the highest ADT. It has been determined that the peak month in 2023 was July with an ADT of $4,447 \mathrm{vpd}$. The visual counts for county roads were performed in March. The ITD data for March of 2023 shows that there was an ADT of 2,645 vpd. This indicated that the seasonal difference between when the visual counts were performed (March) and the peak month (July) is a multiplier of 1.68 . Throughout this study, all visual counts in March will be multiplied by 1.68 to help represent the traffic in July.

D. Existing 2024 Segment PM Peak Traffic Volumes

1. Seg $\mathbf{1}$ - Hwy 33 Existing 2024 Peak Hr Flow

The traffic volumes for Hwy 33 were obtained from the ITD. The ITD website for Road Data features an interactive map that allows a query by road milepost for Average Annual Daily Traffic (AADT), which is the total volume of traffic on a road for a year divided by the number of days (365) in a year. However, these values are annual averages rather than peak days that reflect summertime travel. ITD also maintains Automatic Traffic Recorders (ATRs) throughout the state including District 6, two (2) of these ATRs are located on Hwy 33; ATR 59 east of Newdale and ATR 239 south of Driggs. The ATR most relevant to this project is ATR \#59 near Newdale which records the traffic on Hwy 33. The monthly AADT for ATR \#59 in 2023 ranged from a low in February of 2,565 vpd to a high in July of 4,447 vpd. This study will
focus on the July MADT or peak season and not the ADT. The following figure shows the locations of the ATRs in the area.

Figure 5: Hwy 33 ATR Locations
Furthermore, an adjustment needs to be made due to the fact that ATR 59 is 24 miles away from the study area. The ITD does have a database that has the ADT for each milepost along Hwy 33. In order to make these adjustments, the ADT difference between ATR 59 (Milepost 113) and the study area (Milepost 132 and Milepost 136) will be used. The following figure shows the mileposts along Hwy 33.

Figure 6: Hwy 33 Mileposts and ADT
The ITD website shows that the ADT at Milepost 113 to Milepost 130 is $3,300 \mathrm{vpd}$, at Milepost 132 is $4,800 \mathrm{vpd}$, and at Milepost 136 is $5,500 \mathrm{vpd}$. It is calculated that there is an increase in traffic of 45.5% between Milepost 113 and Milepost 132 and an increase of 14.6% between mileposts 132 and 136 .

Data retrieved at ATR 59 shows that the in July, the highest traffic day is Friday. Furthermore, the highest pm peak hour traffic occurs between 5:00 pm and $6: 00 \mathrm{pm}$ on Fridays with a monthly average pm peak of 388 vph with 180 vph traveling east and 208 vph traveling west.

The last step is to take the pm peak hour traffic and adjust them proportionately to the by the calculated increase; an increase of 45.5% from Milepost 113 to Milepost 132 and an increase of 14.6% from Milepost 132 to Milepost 136. The following table shows the calculated PM peak hour volumes that will be used in this study. These volumes will be used in analyzing the intersections.

Table 7 Existing Segment ADT, Peak Hour, and Trip Distribution Volumes

Milepost	Year	ADT	July PM Peak	PM Peak Eastbound	PM Peak Westbound
113	2024	3300	388	180	208
132	2024	4800	564	262	303
136	2024	5500	647	300	347

2. Seg. 2-500W Existing 2024 PM Peak Hr Flow

The results of the visual count show that there were 44 vph headed north and 18 vph headed south during pm peak hour. Increasing these counts by the 1.68 seasonal adjustment multiplier, it is calculated that there are 74 vph headed north and 31 vph headed south.

E. Existing 2024 PM Peak Intersection Traffic Volumes

The traffic volumes at the five (5) existing intersections were visually counted twice in March of 2024. The higher of these volumes counted will be used for the analysis. Additionally, for intersections 4 and 5 that includes Hwy 33, traffic data was obtained from the ITD for the Hwy 33 through movements.

1. Int. 1 - 6500N/1750WPeak Hr Volume

The turning movements that were visually counted in March of 2024 were seasonally adjusted to July and were added to the collected July traffic counts provided by the ITD. The results are shown in the following figure. You will notice that the westbound traffic has a turning movement of one (1) vph for both right and left turns. For both the traffic counts these turning movements had zero (0) vehicles. For modeling purposes, counts were added to represent at least one (1) vehicle per turning movement.

Figure 7: Existing 2024 Conditions 6500N/1750WPM Peak Hr Volume

2. Int. $2-6500 \mathrm{~N} / 500 \mathrm{~W}$ Peak Hr Volume

The turning movements that were visually counted in March of 2024 were seasonally adjusted to July and were added to the collected July traffic counts provided by the ITD. The results are shown in the following figure. You will notice that the northbound left turning and southbound right traffic has a turning movement of one (1) vph. During the traffic counts, these turning movements had zero (0) vehicles. For modeling purposes, counts were added to represent at least one (1) vehicle per turning movement.

Figure 8: Existing 2024 Conditions 6500N/500W PM Peak Hr Volume

3. Int. 3 - 5750N/500W Peak Hr Volume

The turning movements that were visually counted in March of 2024 were seasonally adjusted to July and were added to the collected July traffic counts provided by the ITD. The results are shown in the following figure.

Figure 9: Existing 2024 Conditions 5750N/500W PM Peak Hr Volume

4. Int. 4 - Hwy 33/5750N Peak Hr Volume

The turning movements that were visually counted in March of 2024 were seasonally adjusted to July and were added to the collected July traffic counts provided by the ITD. The results are shown in the following figure. You will notice that the westbound right turning and southbound left turning traffic has a turning movement of one (1) vph. During the traffic counts, these turning movements had zero (0) vehicles. For modeling purposes, counts were added to represent at least one (1) vehicle per turning movement.

Figure 10: Existing 2024 Conditions Hwy 33/5750N PM Peak Hr Volume

5. Int. 5 - Hwy 33/500W Peak Hr Volume

The turning movements that were visually counted in March of 2024 were seasonally adjusted to July and were added to the collected July traffic counts provided by the ITD. The results are shown in the following figure. You will notice that the westbound right turning and southbound left turning traffic has a turning movement of one (1) vph. During the traffic counts, these turning movements had zero (0) vehicles. For modeling purposes, counts were added to represent at least one (1) vehicle per turning movement.

Figure 11: Existing 2024 Conditions Hwy 33/500W PM Peak Hr Volume

F. Existing 2024 Segment PM Peak Traffic Conditions

The methods discussed in Chapter 2 will be used to calculate the FFS, PTSF, PFFS, v/c ratio, and LOS. The following table is a result of these calculations. For a more in-depth look at these calculations, reference Appendix H.

Table 8 -Existing 2024 Segments PM Traffic LOS

Segment 1	$\mathbf{2 0 2 4}$ (Existing)	
Hwy 33	Value	LOS
FFS (mph)	63.25	n / a
ATS (mph)	54.48	B
PTSF (\%)	53.1%	B
v/c Ratio	0.2	B
Segment 2		$\mathbf{2 0 2 4}$ (Existing)
2000S (from Hwy 33 to 5750N)	Value	LOS
FFS (mph)	40	n / a
PFFS (\%)	97.1%	A
v/c Ratio	0.04	A

G. Existing 2024 Intersection PM Peak Hr Traffic Conditions

In order to determine how well an intersection is functioning, the intersection's Measures of Effectiveness (MOEs) for the peak hour is analyzed. The MOEs include:

1. Level of Service (LOS)
2. Control Delay
3. Volume/Capacity Ratio (V/C Ratio)
4. $95^{\text {th }}$ Percentile Queue

Using the traffic volumes and turning movements shown previously, the 2024 existing MOEs for the intersections can be determined.

1. Int. 1 - 6500N/1750WExisting 2024 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 1 are shown in the following figure.
Table 9 -Int. 1 - Existing (2024) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS	WBL		NBT	NBR		$\frac{\square}{\text { SBT }}$
∞ Lanes and Sharing (\#RL)	M		\dagger			*
- Traffic Volume (vph]	1	1	10	10	1	7
- Future Volume (vph)	1	1	10	10	1	7
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	-	-	4.1	-
- Follow Up Time, IF [s]	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.00	0.00	0.01	0.01	0.00	0.00
- Control Delay [s]	8.6	8.6	0.0	0.0	0.0	0.8
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
- Approach Delay (s)	8.6	-	0.0	-	-	0.8

2. Int. 2 - 6500N/500W Existing 2024 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 2 are shown in the following figure.

Table 10 -Int. 2 - Existing (2024) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS	y		4			SBR
∞ Lanes and Sharing (\#RL)	\%			\uparrow	\uparrow	
- Traffic Volume (vph)	7	3	1	77	50	1
- Future Volume (vph)	7	3	1	77	50	1
- Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	4.1	-	-	
- Follow Up Time, tF (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.01	0.01	0.00	0.00	0.03	0.03
- Control Delay (s)	9.2	9.2	0.0	0.1	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	1	1	0	0	0	0
- Approach Delay [s]	9.2	-	-	0.1	0.0	-

3. Int. 3 - 5750N/500W Existing 2024 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 3 are shown in the following figure.
Table 11 -Int. 3 - Existing (2024) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS	EBL	\rightarrow EBT			$\begin{aligned} & \text { WBT } \\ & \text { W } \end{aligned}$			¢			SBT	SBR
∞ Lanes and Sharing [\#RL)		\$			*			\$			\$	
- Traffic Volume (vph]	10	13	3	24	15	7	12	61	15	13	27	10
- Future Volume (vph]	10	13	3	24	15	7	12	61	15	13	27	10
\bigcirc Sign Control	-	Stop	-									
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
\bigcirc Critical Gap, tC [s]	-	-	-	-	-	-	-	-	-	-	-	
- Follow Up Time, IF (s)	-	-	-	-	-	-	-	-	-	-	-	
- Volume to Capacity Ratio	0.04	0.04	0.04	0.06	0.06	0.06	0.12	0.12	0.12	0.07	0.07	0.07
- Control Delay [s]	7.6	7.6	7.6	7.7	7.7	7.7	7.7	7.7	7.7	7.5	7.5	7.5
- Level of Service	A	A	A	A	A	A	A	A	A	A	A	A
- Queue Length 95th (ft)	-	-	-	-	-	-	-	-	-	-	-	-
- Approach Delay (s)	-	7.6	-	-	7.7	-	-	7.7	-	-	7.5	-

4. Int. 4 - Hwy 33/5750W Existing 2024 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 4 are shown in the following figure.

Table 12 -Int. 4 - Existing (2024) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS	EBL		WBT			SBR
∞ Lanes and Sharing (\#RL)		${ }_{4}$	F		M	
- Traffic Volume (vph)	27	300	347	1	1	37
- Future Volume (vph)	27	300	347	1	1	37
- Sign Control	-	Free	Free	-	Stop	-
co Median Width (ft)	-	0	0	-	12	-
∞ TWLTL Median	-	\square	\square	-	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	4.1	-	-	-	6.4	6.2
- Follow Up Time, tF (s)	2.2	-	-	-	3.5	3.3
- Volume to Capacity Ratio	0.03	0.03	0.23	0.23	0.07	0.07
- Control Delay [s]	0.3	0.9	0.0	0.0	11.1	11.1
- Level of Service	A	A	A	A	B	B
- Queue Length 95th (ft)	2	2	0	0	5	5
- Approach Delay [s]	-	0.9	0.0	-	11.1	-

5. Int. 5 - Hwy 33/500W Existing 2024 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 5 are shown in the following figure.
Table 13 -Int. 5-Existing (2024) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS		$\begin{aligned} & 4 \\ & \text { WBR } \end{aligned}$			5	SBT
∞ Lanes and Sharing (\#RL)	*		\uparrow			4
- Traffic Volume (vph)	54	1	347	87	1	300
- Future Volume (vph)	54	1	347	87	1	300
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
O Critical Gap, tC [s]	6.4	6.2	-	-	4.1	-
- Follow Up Time, tF (s)	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.17	0.17	0.29	0.29	0.00	0.00
O Control Delay (s)	17.1	17.1	0.0	0.0	0.0	0.0
- Level of Service	C	C	A	A	A	A
- Queue Length 95th (ft)	15	15	0	0	0	0
- Approach Delay [s]	17.1	-	0.0	-	-	0.0

H. Turn Lane Warrants Based on Safety Analysis of Intersections

1. Existing Conditions Left Turn Lane Analysis

Using the guidelines and procedures for left turn lane analysis, we learn that if a three-leg intersection has directional traffic higher than 200 vph per lane on the major roadway and more than 150 vph per lane on a four-leg intersection, a left turn is warranted. The intersections that qualify are Int. 4 Hwy 33/5750W and Int. 5 Hwy 33/500W. An analysis will be performed for both the directions (see Appendix F for the leftturn worksheets).

The following left turn lanes are warranted for the existing 2024 traffic.
Civilize, PLLC

* Int. 4 Hwy 33/5750W: Eastbound traffic
* Int. 5 Hwy 33/500W: Southbound traffic

2. Existing Conditions Right Turn Lane Analysis

Based on the guidelines and procedures for right turn lane analysis, the following right turn lanes are warranted for the existing 2024 traffic (see Appendix G for the right-turn worksheet).

* Int. 5 Hwy 33/500W: Northbound traffic

I. Analysis of Existing 2024 PM Peak Hr Traffic Conditions Summary

This chapter has identified the following:

1. Segments

The following table is a summary of each segment's LOS.
Table 14 -Existing 2024 Segments Traffic Condition Summary

Segment 1	$\mathbf{2 0 2 4}$ (Existing)	
Hwy 33	Value	LOS
FFS (mph)	63.25	n / a
ATS (mph)	54.48	B
PTSF (\%)	53.1%	B
v/c Ratio	0.2	B
Segment 2		$\mathbf{2 0 2 4}$ (Existing)
2000 (from Hwy 33 to 5750N)	Value	

a. Segment Summary

As can be seen in the above table, each segment is operating at an acceptable level.

2. Intersections

The following tables show each intersection's LOS for the 2024 existing conditions.

Table 15 -Int. 1 Existing 2024 Intersections Traffic Condition Summary

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2024 Traffic	n/a	n/a	n/a	1	n/a	1	n/a	10	10	1	7	n/a
LOS	n/a	n/a	n/a	A	n/a	A	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	8.6	n/a	8.6	n/a	0	0	0	0.8	n/a

Table 16 -Int. 2 Existing 2024 Intersections Traffic Condition Summary

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2024 Traffic	7	n/a	3	n/a	n/a	n/a	1	77	n/a	n/a	50	1
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	9.2	n/a	9.2	n/a	n/a	n/a	0	0.1	n/a	n/a	0	0

Table 17 -Int. 3 Existing 2024 Intersections Traffic Condition Summary

Int 3-5750N/500W - Build LOS and Delay Times without the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2024 Traffic	10	13	3	24	15	7	12	61	15	13	27	10
LOS	A	A	A	A	A	A	A	A	A	A	A	A
Delay	7.6	7.6	7.6	7.7	7.7	7.7	7.7	7.7	7.7	7.5	7.5	7.5

Table 18 -Int. 4 Existing 2024 Intersections Traffic Condition Summary

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2024 Traffic	27	300	n/a	n/a	347	1	n/a	n/a	n/a	1	n/a	37
LOS	A	A	n/a	n/a	A	A	n/a	n/a	n/a	B	n/a	B
Delay	0.3	0.9	n/a	n/a	0	0	n/a	n/a	n/a	11.1	n/a	11.1

Table 19 -Int. 5 Existing 2024 Intersections Traffic Condition Summary

Int 5 - Hwy 33/500w - Build LOS and Delay Times without the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2024 Traffic	n/a	n/a	n/a	54	n/a	1	n/a	347	87	1	300	n/a
LOS	n/a	n/a	n/a	C	n/a	C	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	17.1	n/a	17.1	n/a	0	0	0	0	n/a

a. Intersection Summary

As can be seen in the above tables, each intersection is currently operating at an acceptable level.

3. Turn Lane Analysis

a. Left Turn Lane Analysis

The following left turn lanes are warranted for the existing 2024 traffic.

* Int. 4 Hwy 33/5750W: Eastbound traffic
* Int. 5 Hwy 33/500W: Southbound traffic
b. Right Turn Lane Analysis

The following right turn lanes are warranted for the existing 2024 traffic.

* Int. 5 Hwy 33/500W: Northbound traffic

4. Overall Summary for 2024
a. 2024 Existing Conditions Review

In summary, the following was determined to be operating at an unacceptable level for the 2024 existing conditions:

* Int. 4 Hwy 33/5750W: Eastbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Southbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Northbound right-turning traffic exceeds the minimum safety levels

b. Mitigation Measures for the 2024 Existing Conditions

It is recommended that a left turn lane or a two way left turn lane (TWLTL) be constructed on Hwy 33 at both intersections 4 and 5. Additionally, it is recommended that a right turn lane be constructed at Intersection 5 to accommodate the 2024 traffic safely.

V. Projected Traffic

A. Site Traffic

It is anticipated that buildout of the development will be complete by 2029.

1. Trip Generation

In order to determine the trips generated by the proposed development, the ITE Trip Generation $10^{\text {th }}$ Edition Manual was used. This study will use traffic data obtained from the ITD to determine traffic conditions for the 2024 (existing), 2029 (Project buildout), and the 2049 (Future) horizon years.

a. Buildout (2029)

The following two (2) tables show the land use and trip generation for the ADT and the peak hour.
Table 20- Land Use and Trip Generation (ADT) for Buildout (2029)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips	Internal Capture Trips		$\begin{gathered} \text { Pass-by } \\ \text { Trips } \end{gathered}$		Primary Trips Total
Weekday Trips										
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	9.57	163	0\%	0	-	-	163
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	9.57	163	0\%	0	-	-	163
Total					325		0		0	325

Table 21- Land Use and Trip Generation (Peak Hour) for Buildout (2029)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips	Internal Capture Trips		$\begin{gathered} \text { Pass-by } \\ \text { Trips } \end{gathered}$		$\begin{aligned} & \text { Primary } \\ & \text { Trips Total } \end{aligned}$
Weekday Peak Hour										
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13
Total					26		0		0	26

2. Trip Distribution

Trip distribution is a percentage indicating what percentage of traffic is entering or exiting the study area. The ITE Trip Generation Handbook outlines the trip distribution for each land use. The following two (2) tables show the land use, trip generation, and trip distribution for the ADT and the peak hour.

Table 22- Trip Distribution (ADT) for Buildout (2029)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips			$\begin{array}{\|c\|} \hline \text { Pass-by } \\ \text { Trips } \end{array}$		Primary Trips Total	Primary Trips Entering		Primary Trips Exiting	
Weekday Trips														
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	9.57	163	0\%	0	-	-	163	50\%	81	50\%	81
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	9.57	163	0\%	0	-	-	163	50\%	81	50\%	81
Total					325		0		0	325		163		163

Table 23- Trip Distribution (Peak Hour) for Buildout (2029)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips	Internal Capture Trips		$\begin{aligned} & \text { Pass-by } \\ & \text { Trips } \end{aligned}$		Primary Trips Total	Primary Trips Entering		$\begin{array}{\|c} \hline \text { Primary } \\ \text { Trips } \\ \text { Exiting } \\ \hline \end{array}$	
Weekday Peak Hour														
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13	64\%	8	36\%	5
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13	64\%	8	36\%	5
Total					26		0		0	26		17		9

3. Modal Split

Modal split is the determination of different travel modes (automobile, heavy vehicles, walk, etc.) from an origin to a given destination. Analyzing the pedestrian traffic is outside the scope of this study and it is assumed that no heavy vehicles will be generated from the development. A standard 5% heavy vehicle percentage will be applied to this study.

4. Trip Assignment

Addendum 2 is a scenario where 100% of the traffic generated by the proposed development travels south on 1750 W to 6500 N , turns left and travels east to 500 W , and then travels south to Hwy 33. It should be noted that when the traffic reaches Intersection 3 ($5750 \mathrm{~N} / 500 \mathrm{~W}$) it is assumed that the generated traffic will follow the same traffic patterns where 20% turn right towards Intersection 4 and the remaining 80% travels through the intersection towards Intersection 5.

B. Through Traffic (Non-Site Traffic)

1. Non-Site Traffic for anticipated Development in Study Area

a. Method of Projections

Pass-by trips are made as intermediate stops on the way from an origin to a destination without a route diversion. In other words, a pass-by trip is when the traffic on an adjacent roadway is attracted to a certain land use in a development as non-site traffic. The trip generally goes from origin to generator and then returns to the origin. The proposed development does not have any land uses that would be considered pass-by trips.

b. Trip Distribution

This section is not applicable due to the fact that single-family detached housing is not considered a nonsite traffic generator.

c. Modal Split

This section is not applicable due to the fact that single-family detached housing is not considered a nonsite traffic generator.

d. Trip Assignment

This section is not applicable due to the fact that single-family detached housing is not considered a nonsite traffic generator.

C. Total Traffic

The total trips generated by the development and the impact to each intersection for the 2029 Buildout are shown in the following figures.

Figure 12- Intersection 1 6500N/1750WPM Peak Generated Traffic

Figure 13- Intersection 2 6500N/500W PM Peak Generated Traffic

Figure 14- Intersection 3 5750N/500W PM Peak Generated Traffic

Figure 15- Intersection 4 Hwy 33/5750N PM Peak Generated Traffic

Figure 16- Intersection 5 Hwy 33/500W PM Peak Generated Traffic

VI. 2029 Horizon Year Traffic Analysis (Buildout)

A. On-Site Development

Buildout is assumed to be complete by the year 2029.

B. Traffic Forecasting

The traffic counts from the 2024 existing year were increased by the annual growth rate percentages to establish the background traffic. This chapter will analyze two (2) scenarios for each segment and intersection; 2029 background traffic (without the development) and 2029 background plus site traffic (with the development).

C. Roadway Network

Within the area of influence there will be two (2) roadway segments and five (5) existing intersections that will be studied. The segments and the intersections that will analyzed are:

1. Segment 1 - Hwy 33 (from Intersection $6,1 / 2$ mile each direction)
2. Segment $2-500 \mathrm{~W}$ (from Hwy 33 to 5750 N)
3. Intersection $1-6500 \mathrm{~N} / 1750 \mathrm{~W}$
4. Intersection $2-6500 \mathrm{~N} / 500 \mathrm{~W}$
5. Intersection $3-5750 \mathrm{~N} / 500 \mathrm{~W}$
6. Intersection 4 - Hwy $33 / 5750 \mathrm{~N}$
7. Intersection 5 - Hwy $33 / 500 \mathrm{~W}$

Additionally, it was determined in the 2024 existing conditions analysis, that left turn lanes for both intersections 4 and 5 and a right turn lane for Intersection 5 are warranted to meet safety guidelines. For the 2029 analysis, the addition of the left and right turn lanes will be added to the model.

D. 2029 Buildout Segment PM Peak Traffic Volumes

This section discusses the ADT, the peak hour flows, and the trip distribution for the 2029 Buildout Year traffic.

1. Segment 1: Hwy 332029 Buildout PM Peak Hr Flow
 a. Average Daily Traffic (ADT) and Monthly Average Daily Traffic (MADT)

The following tables show both 2024 MADT and 2029 MADT with the peak hour of the peak month without and with the development.

Table 24 - Seg 1: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development

Segment 1: Hwy 33	Units	Year	Traffic Volume	Eastbound	Westbound
Max. Month ADT (MADT)	VPD	2024	5500	2750	2750
Max. Month Peak Hour Ave. (PH)	VPH	2024	647	300	347
Max. Month ADT (MADT)	VPD	2029	6322	3161	3161
Max. Month Peak Hour Ave. (PH)	VPH	2029	743	345	398

Table 25 -Seg 1: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development

Segment 1: Hwy 33	Units	Year	Traffic Volume	Eastbound	Westbound
Max. Month ADT (MADT)	VPD	2024	5500	2750	2750
Max. Month Peak Hour Ave. (PH)	VPH	2024	647	300	347
Max. Month ADT (MADT)	VPD	2029	6647	3324	3324
Max. Month Peak Hour Ave. (PH)	VPH	2029	769	348	400

2. Segment 2: 500W (from Hwy 33 to 5750N)

The following tables show both 2024 MADT and 2029 MADT with the peak hour of the peak month without and with the development.

Table 26 - Seg 2: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development

Segment 2: 500W (from Hwy 33 to 5750N)	Units	Year	Traffic Volume	Northbound	Southbound
Max. Month ADT (MADT)	VPD	2024	893	447	447
Max. Month Peak Hour Ave. (PH)	VPH	2024	105	74	31
Max. Month ADT (MADT)	VPD	2029	1026	513	513
Max. Month Peak Hour Ave. (PH)	VPH	2029	121	85	36

Table 27 - Seg 2: 2029 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development

Segment 2: 500W (from Hwy 33 to 5750N)	Units	Year	Traffic Volume	Northbound	Southbound
Max. Month ADT (MADT)	VPD	2024	1153	577	577
Max. Month Peak Hour Ave. (PH)	VPH	2024	126	88	38
Max. Month ADT (MADT)	VPD	2029	1286	643	643
Max. Month Peak Hour Ave. (PH)	VPH	2029	142	99	43

3. Intersection $\mathbf{1} \mathbf{- 6 5 0 0 N} / \mathbf{1 7 5 0 W P a k} \mathrm{Hr}$ Volume

The turning movements used for the 2024 existing conditions were adjusted to 2029 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure.

Figure 17: 6500N/1750W2029 Traffic Volumes without and with the Development

4. Intersection 2 - 6500N/500W Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2029 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure.

Figure 18: 6500N/500W 2029 Traffic Volumes without and with the Development

5. Intersection 3 - 5750N/500W Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2029 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure.

Figure 19: 5750N/500W 2029 Traffic Volumes without and with the Development

6. Intersection 4 - Hwy 33/5750N Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2029 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure. It should be noted that the recommended turn lanes for the 2024 existing year were added to the model.

Figure 20: Hwy 33/5750N 2029 Traffic Volumes without and with the Development

7. Intersection 5 - Hwy 33/500W Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2029 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure. It should be noted that the recommended turn lanes for the 2024 existing year were added to the model.

Figure 21: Hwy 33/500W 2029 Traffic Volumes without and with the Development

E. 2029 Buildout Segment PM Peak Traffic Conditions

The methods discussed in Chapter 2 will be used to calculate the FFS, PTSF, PFFS, v/c ratio, and LOS. The following table is a result of these calculations. For a more in-depth look at these calculations, reference Appendix H.

Table 28-2029 Buildout Segments PM Traffic LOS

Segment 1	2024 (Existing)		2029 Buildout		
Hwy 33	Value	LOS	Value	LOS	
FFS (mph)	63.25	n / a	63.25	n / a	
ATS (mph)	54.48	B	53.47	B	
PTSF (\%)	53.1%	B	57.2%	C	
v/c Ratio	0.2	B	0.24	C	
Segment 2		$\mathbf{2 0 2 4}$ (Existing)		2029 Buildout	
2000S (from Hwy 33 to 5750N)	Value		LOS	Value	LOS
FFS (mph)	40	n / a	40	n / a	
PFFS (\%)	97.1%	A	95.3%	A	
v/c Ratio	0.04	A	0.07	A	

F. 2029 Buildout Intersection PM Peak Hr Traffic Conditions

In order to determine how well an intersection is functioning, the intersection's Measures of Effectiveness (MOEs) for the peak hour is analyzed. The MOEs include:

1. Level of Service (LOS)
2. Control Delay
3. Volume/Capacity Ratio (v/c Ratio)
4. $95^{\text {th }}$ Percentile Queue

Using the traffic volumes and turning movements shown previously, the 2029 Buildout MOEs for the intersections can be determined.

1. Int. 1 - 6500N/1750W 2029 Buildout PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 1, without and with the development, are shown in the following table.

Table 29-Int. 1-2029 Buildout Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS				$\%$		SBT
¢ Lanes and Sharing (\#RL)	M		\uparrow			\uparrow
- Traffic Volume [vph]	1	1	11	11	1	8
- Future Volume (vph)	1	1	11	11	1	8
- Sign Control	Stop	-	Free	-	-	Free
-o Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
© Right Turn Channelized	-	None	-	None	-	None
O Critical Gap, tC [s]	6.4	6.2	-	-	4.1	
- Follow Up Time, tF [s]	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.00	0.00	0.01	0.01	0.00	0.00
- Control Delay (s)	8.6	8.6	0.0	0.0	0.0	0.7
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
- Approach Delay [s)	8.6	-	0.0	-	-	0.7

Table 30 -Int. 1-2029 Buildout Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS				$\underset{\text { NBR }}{ }$	${ }_{\text {SBL }}$	
∞ Lanes and Sharing (\#RL)	*		\hat{F}			\uparrow
- Traffic Volume [vph]	1	18	11	11	10	8
- Future Volume (vph)	1	18	11	11	10	8
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	-	-	4.1	-
- Follow Up Time, IF (s)	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.02	0.02	0.01	0.01	0.01	0.01
- Control Delay (s)	8.5	8.5	0.0	0.0	0.1	4.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	2	2	0	0	1	1
- Approach Delay [s]	8.5	-	0.0	-	-	4.0

2. Int. 2 - 6500N/500W 2029 Buildout PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 2, without and with the development, are shown in the following table.
Table 31 -Int. 2 - 2029 Buildout Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS	EBL	EBR	$\frac{4}{N B L}$			$\begin{aligned} & \downarrow / \\ & \text { SBR } \end{aligned}$
∞ Lanes and Sharing (\#RL)	*			4	\hat{F}	
- Traffic Volume (vph)	8	3	1	89	57	1
- Future Volume (vph)	8	3	1	89	57	1
- Sign Control	Stop	-	-	Free	Free	
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	4.1	-	-	
- Follow Up Time, tF (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.01	0.01	0.00	0.00	0.04	0.04
- Control Delay [s]	9.3	9.3	0.0	0.1	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	1	1	0	0	0	0
- Approach Delay [s]	9.3	-	-	0.1	0.0	-

Table 32-Int. 2 - 2029 Buildout Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	EBL	EBR	4			$\frac{7}{\text { SBR }}$
∞ Lanes and Sharing (\#RL)	\%			${ }_{4}$	个	
- Traffic Volume (vph)	8	12	18	89	57	1
- Future Volume (vph)	8	12	18	89	57	1
- Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (tt)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	4.1	-	-	-
- Follow Up Time, tF [s]	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.03	0.03	0.01	0.01	0.04	0.04
- Control Delay [s]	9.2	9.2	0.1	1.3	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	2	2	1	1	0	0
- Approach Delay [s]	9.2	-	-	1.3	0.0	-

3. Int. 3 - 5750N/500W 2029 Buildout PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 3, without and with the development, are shown in the following table.

Table 33-Int. 3-2029 Buildout Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS					WBT WB							
∞ Lanes and Sharing (\#RL)		4			4			4			4	
- Traffic Volume (vph)	11	15	3	28	17	8	14	70	17	15	31	11
O Future Volume (vph)	11	15	3	28	17	8	14	70	17	15	31	11
- Sign Control	-	Stop	-									
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
O Critical Gap, tC [s]	-	-	-	-	-	-	-	-	-	-	-	-
O Follow Up Time, tF [s]	-	-	-	-	-	-	-	-	-	-	-	-
- Volume to Capacity Ratio	0.04	0.04	0.04	0.07	0.07	0.07	0.13	0.13	0.13	0.08	0.08	0.08
\bigcirc Control Delay [s]	7.7	7.7	7.7	7.8	7.8	7.8	7.8	7.8	7.8	7.6	7.6	7.6
- Level of Service	A	A	A	A	A	A	A	A	A	A	A	A
O Queue Length 95th (ft)	-	-	-	-	-	-	-	-	-	-	-	-
O Approach Delay [s]	-	7.7	-	-	7.8	-	-	7.8	-	-	7.6	-

Table 34 -Int. 3 - 2029 Buildout Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	EBL		EBR		$\begin{aligned} & \text { WBT } \end{aligned}$	WBR	NBL	$\dagger_{\text {NBT }}$	$\%$			SBR
∞ Lanes and Sharing (\#RL)		*			*			*			*	
- Traffic Volume (vph]	14	15	3	28	17	8	14	84	17	15	38	13
- Future Volume (vph)	14	15	3	28	17	8	14	84	17	15	38	13
- Sign Control	-	Stop	-									
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
- Critical Gap, tC (s)	-	-	-	-	-	-	-	-	-	-	-	-
- Follow Up Time, IF [s]	-	-	-	-	-	-	-	-	-	-	-	-
- Volume to Capacity Ratio	0.05	0.05	0.05	0.08	0.08	0.08	0.15	0.15	0.15	0.09	0.09	0.09
- Control Delay [s]	7.8	7.8	7.8	7.9	7.9	7.9	8.0	8.0	8.0	7.7	7.7	7.7
- Level of Service	A	A	A	A	A	A	A	A	A	A	A	A
- Queue Length 95th (ft)	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc Approach Delay [s]	-	7.8	-	-	7.9	-	-	8.0	-	-	7.7	-

4. Int. 4 - Hwy 33/5750N 2029 Buildout PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 4, without and with the development, are shown in the following table. It should be noted that the recommended turn lanes for the 2024 existing year were added to the model.
Table 35-Int. 4-2029 Buildout Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS			$\begin{aligned} & \text { WBT } \end{aligned}$			$\stackrel{\downarrow}{4 B R}$
∞ Lanes and Sharing (\#RL)	${ }^{7}$	4	F		\%	
- Traffic Volume (vph)	31	345	399	1	1	43
- Future Volume (vph)	31	345	399	1	1	43
- Sign Control	-	Free	Free	-	Stop	
∞ Median Width (ft)	-	12	12	-	12	-
∞ TWLTL Median	-	\checkmark	\checkmark	-	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	4.1	-	-	-	6.4	6.2
- Follow Up Time, tF (s)	2.2	-	-	-	3.5	3.3
- Volume to Capacity Ratio	0.03	0.23	0.27	0.27	0.08	0.08
- Control Delay (s)	8.4	0.0	0.0	0.0	11.6	11.6
- Level of Service	A	A	A	A	B	B
- Queue Length 95th (ft)	2	0	0	0	7	7
- Approach Delay (s)	-	0.7	0.0	-	11.6	-

Table 36 －Int． 4 － 2029 Buildout Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	$\frac{y}{E B L}$		WBT			
∞ Lanes and Sharing（\＃RL）	${ }^{7}$	\uparrow	F		M	
\bigcirc Traffic Volume（vph）	33	345	399	1	1	45
O Future Volume（vph）	33	345	399	1	1	45
－Sign Control	－	Free	Free	－	Stop	－
∞ Median Width（ ft ）	－	12	12	－	12	－
∞ TWLTL Median	－	\checkmark	\checkmark	－	\square	
∞ Right Turn Channelized	－	None	－	None	－	None
\bigcirc Critical Gap，tC［s］	4.1	－	－	－	6.4	6.2
－Follow Up Time， F （s）	2.2	－	－	－	3.5	3.3
－Volume to Capacity Ratio	0.03	0.23	0.27	0.27	0.09	0.09
O Control Delay［s］	8.4	0.0	0.0	0.0	11.6	11.6
－Level of Service	A	A	A	A	B	B
－Queue Length 95th（ft）	3	0	0	0	7	7
－Approach Delay［s］	－	0.7	0.0	－	11.6	－

5．Int． 5 －Hwy 33／500W 2029 Buildout PM Peak Hr Traffic Conditions

The traffic volumes，identified at the beginning of this chapter，were entered into the computer modeling software Synchro．The results from the model for Intersection 5，without and with the development，are shown in the following table．It should be noted that the recommended turn lanes for the 2024 existing year were added to the model．

Table 37 －Int．5－2029 Buildout Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS						SBT
∞ Lanes and Sharing（\＃RL）	\％		个	「	${ }^{7}$	个
－Traffic Volume［vph］	62	1	399	100	1	345
－Future Volume（vph）	62	1	399	100	1	345
－Sign Control	Stop	－	Free	－	－	Free
∞ Median Width（ ft ）	12	－	0	－	－	12
∞ TWLTL Median	\square	－	\square	－	－	\checkmark
∞ Right Turn Channelized	－	None	－	None	－	None
－Critical Gap，tC（s）	6.4	6.2	－	－	4.1	
－Follow Up Time，tF（s）	3.5	3.3	－	－	2.2	
－Volume to Capacity Ratio	0.13	0.13	0.29	0.29	0.00	0.23
－Control Delay（s）	12.8	12.8	0.0	0.0	8.6	0.0
－Level of Service	B	B	A	A	A	A
－Queue Length 95th（ft）	11	11	0	0	0	0
－Approach Delay［s］	12.8	－	0.0	－	－	0.0

Table 38 -Int. 5 - 2029 Buildout Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS				NBR	${ }_{S B L}$	SBT
∞ Lanes and Sharing (\#RL)	\%		$\hat{7}$	「	${ }^{7}$	*
- Traffic Volume [vph]	69	1	399	114	1	345
- Future Volume (vph)	69	1	399	114	1	345
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	12
∞ TWLTL Median	\square	-	\square	-	-	\checkmark
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	-	-	4.1	
- Follow Up Time, tF (s)	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.15	0.15	0.29	0.29	0.00	0.23
- Control Delay [s]	12.9	12.9	0.0	0.0	8.7	0.0
- Level of Service	B	B	A	A	A	A
- Queue Length 95th (ft)	13	13	0	0	0	0
\bigcirc Approach Delay (s)	12.9	-	0.0	-	-	0.0

G. Turn Lane Warrants Based on Safety Analysis of Intersections

1. 2029 Buildout Conditions Left Turn Lane Analysis

It was identified that left turn lanes were warranted for the 2024 existing conditions for both intersection 4 and 5. No new turn lanes are warranted between the 2024 existing conditions and the 2029 buildout conditions; see Appendix F for the left-turn worksheets.

2. 2029 Buildout Conditions Right Turn Lane Analysis

It was identified that a right turn lane was warranted for the 2024 existing conditions for Intersection 5. No new turn lanes are warranted between the 2024 existing conditions and the 2029 buildout conditions; see Appendix G for the right-turn worksheets.

H. Analysis of 2029 Buildout PM Peak Hr Traffic Conditions Summary

This chapter has identified the following:

1. Segments

The following table is a summary of each segment's LOS

Table 39-2029 Buildout Segments Traffic Condition Summary

Segment 1	$\mathbf{2 0 2 4}$ (Existing)		$\mathbf{2 0 2 9}$ Buildout		
Hwy 33	Value	LOS	Value	LOS	
FFS (mph)	63.25	n/a	63.25	n / a	
ATS (mph)	54.48	B	53.47	B	
PTSF (\%)	53.1%	B	57.2%	C	
v/c Ratio	0.2	B	0.24	C	
Segment 2	$\mathbf{2 0 2 4}$ (Existing)		$\mathbf{2 0 2 9}$ Buildout		
2000S (from Hwy 33 to 5750N)	Value		LOS	Value	LOS
FFS (mph)	40	n / a	40	n / a	
PFFS (\%)	97.1%	A	95.3%	A	
v/c Ratio	0.04	A	0.07	A	

a. Segment Summary

As can be seen in the above table, each segment is forecasted to operate at an acceptable level.

2. Intersections

The following tables show each intersection's LOS for the 2029 buildout conditions.
Table 40 -Int. 12029 Buildout Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	n/a	n/a	n/a	1	n/a	1	n/a	11	11	1	8	n/a
LOS	n/a	n/a	n/a	A	n/a	A	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	8.6	n/a	8.6	n/a	0	0	0	0.7	n/a

Int 1-6500N/1750W-Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	n/a	n/a	n/a	1	n/a	18	n/a	11	11	10	8	n/a
LOS	n/a	n/a	n/a	A	n/a	A	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	8.5	n/a	8.5	n/a	0	0	0.1	4	n/a

Table 41 -Int. 22029 Buildout Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	8	n/a	3	n/a	n/a	n/a	1	89	n/a	n/a	57	1
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	9.3	n/a	9.3	n/a	n/a	n/a	0	0.1	n/a	n/a	0	0

Int 2-6500N/500W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	8	n/a	12	n/a	n/a	n/a	18	89	n/a	n/a	57	1
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	9.2	n/a	9.2	n/a	n/a	n/a	0.1	1.3	n/a	n/a	0	0

Table 42 -Int. 32029 Buildout Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	11	15	3	28	17	8	14	70	17	15	31	11
LOS	A	A	A	A	A	A	A	A	A	A	A	A
Delay	7.7	7.7	7.7	7.8	7.8	7.8	7.8	7.8	7.8	7.6	7.6	7.6

Int 3-5750N/500W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	14	15	3	28	17	8	14	84	17	15	38	13
Los	A	A	A	A	A	A	A	A	A	A	A	A
Delay	7.8	7.8	7.8	7.9	7.9	7.9	8	8	8	7.7	7.7	7.7

Table 43 -Int. 42029 Buildout Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	31	345	n/a	n/a	399	1	n/a	n/a	n/a	1	n/a	43
LOS	A	A	n/a	n/a	A	A	n/a	n/a	n/a	B	n/a	B
Delay	8.4	0	n/a	n/a	0	0	n/a	n/a	n/a	11.6	n/a	11.6

Int 4 - Hwy 33/5750w - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	33	345	n/a	n/a	399	1	n/a	n/a	n/a	1	n/a	45
LOS	A	A	n/a	n/a	A	A	n/a	n/a	n/a	B	n/a	B
Delay	8.4	0	n/a	n/a	0	0	n/a	n/a	n/a	11.6	n/a	11.6

Table 44 -Int. 52029 Buildout Intersection Traffic Condition Summary without and with the development

Int 5 - Hwy 33/500w - Build LOS and Delay Times without the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	n/a	n/a	n/a	62	n/a	1	n/a	399	100	1	345	n/a
LOS	n/a	n/a	n/a	B	n/a	B	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	12.8	n/a	12.8	n/a	0	0	8.6	0	n/a

Int 5 - Hwy 33/500W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2029 Traffic	n/a	n/a	n/a	69	n/a	1	n/a	399	114	1	345	n/a
LOS	n/a	n/a	n/a	B	n/a	B	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	12.9	n/a	12.9	n/a	0	0	8.7	0	n/a

a. Intersection Summary

As can be seen in the above tables, all five (5) intersections are forecasted to operate at an acceptable level for the 2029 buildout year.

3. Turn Lane Analysis

a. Left Turn Lane Analysis

The following left turn lane(s) are warranted for the 2029 buildout traffic.

$$
\nLeftarrow \text { None }
$$

b. Right Turn Lane Analysis

The following right turn lane(s) are warranted for the 2029 buildout traffic (between 2024 and 2029).

* None

4. Review of the 2024 Existing Conditions

a. 2024 Existing Conditions Review

This section is a review from Chapter 4. The following was determined to be operating at an unacceptable level for the 2024 existing conditions:

* Int. 4 Hwy 33/5750W: Eastbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Southbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Northbound right-turning traffic exceeds the minimum safety levels
b. Mitigation Measures for the 2024 Existing Conditions

It is recommended that a left turn lane or a two way left turn lane (TWLTL) be constructed on Hwy 33 at both intersections 4 and 5. Additionally, it is recommended that a right turn lane be constructed at Intersection 5 for the 2024 existing conditions.

5. Overall Summary for the 2029 Buildout Conditions

a. 2029 Existing Conditions Review

The following was forecasted to be operating at an unacceptable level for the 2029 existing conditions:

* None
b. Mitigation Measures for the 2029 Buildout Conditions

No mitigation measures are warranted for the 2029 buildout conditions.

VII. 2049 Horizon Year Traffic Analysis

A. On-Site Development

Buildout is assumed to be complete by the year 2029. This chapter will analyze the forecasted conditions for the 20-years after buildout.

B. Traffic Forecasting

The traffic counts from the 2029 buildout year were increased by the annual growth rate percentages to establish the 2049 background traffic. This chapter will analyze two (2) scenarios for each segment and intersection; 2049 background traffic (without the development) and 2049 background plus site traffic (with the development).

C. Roadway Network

Within the area of influence there will be two (2) roadway segments and five (5) existing intersections that will be studied. The segments and the intersections that will analyzed are:

1. Segment 1 - Hwy 33 (from Intersection $6,1 / 2$ mile each direction)
2. Segment $2-500 \mathrm{~W}$ (from Hwy 33 to 5750 N)
3. Intersection $1-6500 \mathrm{~N} / 1750 \mathrm{~W}$
4. Intersection $2-6500 \mathrm{~N} / 500 \mathrm{~W}$
5. Intersection $3-5750 \mathrm{~N} / 500 \mathrm{~W}$
6. Intersection 4 - Hwy $33 / 5750 \mathrm{~N}$
7. Intersection 5 - Hwy $33 / 500 \mathrm{~W}$

Additionally, it was determined in the 2024 existing conditions analysis, that left turn lanes for both intersections 4 and 5 and a right turn lane for Intersection 5 are warranted to meet safety guidelines; no improvements were warranted for the 2029 horizon year. For the 2049 analysis, the addition of the left and right turn lanes will be added to the model.

D. 2049 Horizon Year Segment PM Peak Traffic Volumes

This section discusses the ADT, the peak hour flows, and the trip distribution for the 2049 Buildout Year traffic.

1. Segment 1: Hwy 332049 Horizon Year PM Peak Hr Flow
 a. Average Daily Traffic (ADT) and Monthly Average Daily Traffic (MADT)

The following tables show the 2024 MADT, 2029 MADT, and the 2049 MADT along with the peak hour of the peak month, without and with the development.

Table 45 -Seg 1: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development

Segment 1: Hwy 33	Units	Year	Traffic Volume	Eastbound	Westbound
Max. Month ADT (MADT)	VPD	2024	5500	2750	2750
Max. Month Peak Hour Ave. (PH)	VPH	2024	647	300	347
Max. Month ADT (MADT)	VPD	2029	6322	3161	3161
Max. Month Peak Hour Ave. (PH)	VPH	2029	743	345	398
Max. Month ADT (MADT)	VPD	2049	11033	5516	5516
Max. Month Peak Hour Ave. (PH)	VPH	2049	1297	602	695

Table 46 - Seg 1: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development

Segment 1: Hwy 33	Units	Year	Traffic Volume	Eastbound	Westbound
Max. Month ADT (MADT)	VPD	2024	5500	2750	2750
Max. Month Peak Hour Ave. (PH)	VPH	2024	647	300	347
Max. Month ADT (MADT)	VPD	2029	6647	3324	3324
Max. Month Peak Hour Ave. (PH)	VPH	2029	769	348	400
Max. Month ADT (MADT)	VPD	2049	11358	5679	5679
Max. Month Peak Hour Ave. (PH)	VPH	2049	1323	611	703

2. Segment 2: 500W (from Hwy 33 to 5750N)

The following tables show the 2024 MADT, 2029 MADT, and the 2049 MADT along with the peak hour of the peak month, without and with the development.

Table 47 - Seg 2: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes without the development

Segment 2: 500w (from Hwy 33 to 5750N)	Units	Year	Traffic Volume	Northbound	Southbound
Max. Month ADT (MADT)	VPD	2024	893	447	447
Max. Month Peak Hour Ave. (PH)	VPH	2024	105	74	31
Max. Month ADT (MADT)	VPD	2029	1026	513	513
Max. Month Peak Hour Ave. (PH)	VPH	2029	121	85	36
Max. Month ADT (MADT)	VPD	2049	1791	896	896
Max. Month Peak Hour Ave. (PH)	VPH	2049	211	148	62

Table 48 - Seg 2: 2049 Segment MADT, Peak Hour, and Trip Distribution Volumes with the development

Segment 2: 500W (from Hwy 33 to 5750N)	Units	Year	Traffic Volume	Northbound	Southbound
Max. Month ADT (MADT)	VPD	2024	1153	577	577
Max. Month Peak Hour Ave. (PH)	VPH	2024	126	88	38
Max. Month ADT (MADT)	VPD	2029	1286	643	643
Max. Month Peak Hour Ave. (PH)	VPH	2029	142	99	43
Max. Month ADT (MADT)	VPD	2049	2051	1026	1026
Max. Month Peak Hour Ave. (PH)	VPH	2049	232	162	69

3. Intersection $\mathbf{1} \mathbf{- 6 5 0 0 N} / \mathbf{1 7 5 0 W P e a k} \mathrm{Hr}$ Volume

The turning movements used for the 2024 existing conditions were adjusted to 2049 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure.

Figure 22: 6500N/1750W 2049 Traffic Volumes without and with the Development

4. Intersection 2 - 6500N/500W Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2049 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure.

Figure 23: 6500N/500W 2049 Traffic Volumes without and with the Development

5. Intersection 3 - 5750N/500W Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2049 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure.

Figure 24: 5750N/500W 2049 Traffic Volumes without and with the Development

6. Intersection 4 - Hwy 33/5750N Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2049 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure. It should be noted that the recommended turn lanes for the 2024 existing year were added to the model.

Figure 25: Hwy 33/5750N 2049 Traffic Volumes without and with the Development

7. Intersection 5 - Hwy 33/500W Peak Hr Volume

The turning movements used for the 2024 existing conditions were adjusted to 2049 using the annual growth rate to analyze the intersection without and with the traffic from the development. The results are shown in the following figure. It should be noted that the recommended turn lanes for the 2024 existing year were added to the model.

Figure 26: Hwy 33/500W 2049 Traffic Volumes without and with the Development

E. 2049 Horizon Year Segment PM Peak Traffic Conditions

The methods discussed in Chapter 2 will be used to calculate the FFS, PTSF, PFFS, v/c ratio, and LOS. The following table is a result of these calculations. For a more in-depth look at these calculations, reference Appendix H.

Table 49-2049 Horizon Year Segments PM Traffic LOS

Segment 1	2024 (Existing)		2029 Buildout		2049 Horizon	
Hwy 33	Value	Los	Value	LOS	Value	LOS
FFS (mph)	63.25	n/a	63.25	n/a	63.25	n/a
ATS (mph)	54.48	B	53.47	B	49.97	C
PTSF (\%)	53.1\%	B	57.2\%	C	77.0\%	D
v/c Ratio	0.2	B	0.24	C	0.41	D
Segment 2	2024 (Existing)		2029 Buildout		2049 Horizon	
$\begin{gathered} 2000 \mathrm{~S} \text { (from Hwy } \\ 33 \text { to } 5750 \mathrm{~N} \text {) } \\ \hline \end{gathered}$	Value	LOS	Value	LOS	Value	LOS
FFS (mph)	40	n/a	40	n/a	40	n/a
PFFS (\%)	97.1\%	A	95.3\%	A	92.4\%	A
v/c Ratio	0.04	A	0.07	A	0.11	A

F. 2049 Horizon Year Intersection PM Peak Hr Traffic Conditions

In order to determine how well an intersection is functioning, the intersection's Measures of Effectiveness (MOEs) for the peak hour is analyzed. The MOEs include:

1. Level of Service (LOS)
2. Control Delay
3. Volume/Capacity Ratio (v/c Ratio)
4. $95^{\text {th }}$ Percentile Queue

Using the traffic volumes and turning movements shown previously, the 2049 Buildout MOEs for the intersections can be determined.

1. Int. 1 - 6500N/1750W 2049 Horizon Year PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 1, without and with the development, are shown in the following table.

Table 50 -Int. 1 - 2049 Horizon Year Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS				${ }_{\text {NBR }}$		
∞ Lanes and Sharing (\#RL)	\%		F			4
- Traffic Volume [vph]	2	2	20	20	2	14
- Future Volume (vph)	2	2	20	20	2	14
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	6.4	6.2	-	-	4.1	-
- Follow Up Time, tF [s]	3.5	3.3	-	-	2.2	
- Volume to Capacity Ratio	0.00	0.00	0.03	0.03	0.00	0.00
O Control Delay [s]	8.7	8.7	0.0	0.0	0.0	0.8
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
\bigcirc Approach Delay (s)	8.7	-	0.0	-	-	0.8

Table 51 -Int. 1 - 2049 Horizon Year Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	wBL		$\frac{9}{\text { NBT }}$	$\stackrel{m}{N B R}$		SBT
∞ Lanes and Sharing (\#RL)	M		$\hat{\square}$			\uparrow
- Traffic Volume (vph]	2	19	20	20	11	14
- Future Volume (vph]	2	19	20	20	11	14
- Sign Control	Stop	-	Free	-	-	Free
¢o Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	-	-	4.1	
- Follow Up Time, tF (s)	3.5	3.3	-	-	2.2	
- Volume to Capacity Ratio	0.02	0.02	0.03	0.03	0.01	0.01
- Control Delay (s)	8.6	8.6	0.0	0.0	0.1	3.2
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	2	2	0	0	1	1
- Approach Delay [s)	8.6	-	0.0	-	-	3.2

2. Int. 2 - 6500N/500W 2049 Horizon Year PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 2, without and with the development, are shown in the following table.

Table 52 -Int. 2 - 2049 Horizon Year Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS		EBR	NBL	$\underset{\text { NBT }}{4}$	SBT	$\stackrel{7}{S B R}$
© Lanes and Sharing (\#RL)	\%			${ }_{*}$	\dagger	
- Traffic Volume (vph)	14	6	2	154	100	2
- Future Volume (vph)	14	6	2	154	100	2
- Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
O Critical Gap, tC [s)	6.4	6.2	4.1	-	-	-
- Follow Up Time, tF (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.03	0.03	0.00	0.00	0.07	0.07
- Control Delay [s]	10.0	10.0	0.0	0.1	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	2	2	0	0	0	0
\bigcirc Approach Delay (s)	10.0	-	-	0.1	0.0	-

Table 53 -Int. 2 - 2049 Horizon Year Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	EBL	EBR				SBR
∞ Lanes and Sharing (\#RL)	M			¢	\uparrow	
- Traffic Volume (vph)	14	15	19	154	100	2
- Future Volume (vph)	14	15	19	154	100	2
- Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	6.4	6.2	4.1	-	-	-
- Follow Up Time, (F) (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.04	0.04	0.02	0.02	0.07	0.07
\bigcirc Control Delay [s]	9.9	9.9	0.1	1.0	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	3	3	1	1	0	0
\bigcirc Approach Delay (s)	9.9	-	-	1.0	0.0	-

3. Int. 3 - 5750N/500W 2049 Horizon Year PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 3, without and with the development, are shown in the following table.

Table 54-Int. 3 - 2049 Horizon Year Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS			EBR		WBT WBT							
∞ Lanes and Sharing (\#RL)		4			4			4			4	
- Traffic Volume (vph)	20	26	6	48	30	14	24	122	30	26	54	20
- Future Volume (vph)	20	26	6	48	30	14	24	122	30	26	54	20
- Sign Control	-	Stop	-									
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
O Critical Gap, tC [s]	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc Follow Up Time, HF (s)	-	-	-	-	-	-	-	-	-	-	-	-
- Volume to Capacity Ratio	0.08	0.08	0.08	0.14	0.14	0.14	0.25	0.25	0.25	0.14	0.14	0.14
O Control Delay [s]	8.3	8.3	8.3	8.6	8.6	8.6	8.9	8.9	8.9	8.3	8.3	8.3
- Level of Service	A	A	A	A	A	A	A	A	A	A	A	A
O Queue Length 95th (ft)	-	-	-	-	-	-	-	-	-	-	-	-
\bigcirc Approach Delay [s]	-	8.3	-	-	8.6	-	-	8.9	-	-	8.3	-

Table 55 -Int. 3 - 2049 Horizon Year Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	${ }^{7}$		EBR		4 WBT		NBL	$\dagger_{\text {NBT }}$	NBR			$\stackrel{\downarrow}{S B R}$
∞ Lanes and Sharing (\#RL)		*			*			\uparrow			\uparrow	
- Traffic Volume (vph)	23	26	6	48	30	14	24	136	30	26	61	22
- Future Volume [vph]	23	26	6	48	30	14	24	136	30	26	61	22
- Sign Control	-	Stop	-									
∞ Median Width (t)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
- Critical Gap, tC (s)	-	-	-	-	-	-	-	-	-	-	-	-
- Follow Up Time, tF (s)	-	-	-	-	-	-	-	-	-	-	-	-
- Volume to Capacity Ratio	0.09	0.09	0.09	0.14	0.14	0.14	0.27	0.27	0.27	0.16	0.16	0.16
- Control Delay [s]	8.4	8.4	8.4	8.7	8.7	8.7	9.1	9.1	9.1	8.5	8.5	8.5
- Level of Service	A	A	A	A	A	A	A	A	A	A	A	A
- Queue Length 95th (ft)	-	-	-	-	-	-	-	-	-	-	-	-
- Approach Delay [s]	-	8.4	-	-	8.7	-	-	9.1	-	-	8.5	-

4. Int. 4 - Hwy 33/5750N 2049 Horizon Year PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 4, without and with the development, are shown in the following table. It should be noted that the recommended turn lanes for the 2024 existing year were added to the model.

Table 56-Int. 4 - 2049 Horizon Year Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS		\rightarrow	*- WBT			$\stackrel{\downarrow}{S B R}$
∞ Lanes and Sharing (\#RL)	${ }^{7}$	\uparrow	\uparrow		*	
- Traffic Volume (vph)	54	602	696	2	2	74
- Future Volume (vph]	54	602	696	2	2	74
- Sign Control	-	Free	Free	-	Stop	-
∞ Median Width (ft)	-	12	12	-	12	-
∞ TWLTL Median	-	\checkmark	\checkmark	-	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	4.1	-	-	-	6.4	6.2
- Follow Up Time, tF [s]	2.2	-	-	-	3.5	3.3
- Volume to Capacity Ratio	0.07	0.40	0.47	0.47	0.23	0.23
- Control Delay [s]	9.8	0.0	0.0	0.0	17.1	17.1
- Level of Service	A	A	A	A	C	C
- Queue Length 95th (ft)	6	0	0	0	21	21
O Approach Delay [s]	-	0.8	0.0	-	17.1	-

Table 57 -Int. 4 - 2049 Horizon Year Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	z^{\prime}		$\begin{aligned} & \star- \\ & \text { WBT } \end{aligned}$		${ }_{\text {SBL }}$	SBR
∞ Lanes and Sharing (\#RL)	${ }^{7}$	+	\uparrow		M	
- Traffic Volume (vph)	57	602	696	2	2	76
O Future Volume [vph]	57	602	696	2	2	76
- Sign Control	-	Free	Free	-	Stop	-
∞ Median Width (ft)	-	12	12	-	12	-
∞ TWLTL Median	-	\checkmark	\checkmark	-	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	4.1	-	-	-	6.4	6.2
- Follow Up Time, tF (s)	2.2	-	-	-	3.5	3.3
- Volume to Capacity Ratio	0.08	0.40	0.47	0.47	0.23	0.23
\bigcirc Control Delay (s)	9.8	0.0	0.0	0.0	17.2	17.2
- Level of Service	A	A	A	A	C	C
- Queue Length 95th (ft)	6	0	0	0	22	22
\bigcirc Approach Delay (s)	-	0.9	0.0	-	17.2	-

5. Int. 5 - Hwy 33/500W 2049 Horizon Year PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 5, without and with the development, are shown in the following table. It should be noted that the recommended turn lanes for the 2024 existing year were added to the model.

Table 58-Int. 5-2049 Horizon Year Peak Hr MOEs Without the Development

HCM 2000 SIGNING SETTINGS	wBL		4	NBR		$\begin{aligned} & \ddagger \\ & \hline \mathrm{SBT} \end{aligned}$
∞ Lanes and Sharing (\#RL)	*		$\stackrel{1}{ }$	「	*	\uparrow
- Traffic Volume (vph)	108	2	696	175	2	602
- Future Volume (vph)	108	2	696	175	2	602
- Sign Control	Stop	-	Free	-	-	Free
co Median Width (ft)	12	-	0	-	-	12
∞ TWLTL Median	\square	-	\square	-	-	V
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, IC (s)	6.4	6.2	-	-	4.1	
- Follow Up Time, t [[s]	3.5	3.3	-	-	2.2	
- Volume to Capacity Ratio	0.36	0.36	0.50	0.50	0.00	0.40
- Control Delay (s)	21.1	21.1	0.0	0.0	10.3	0.0
- Level of Service	C	C	A	A	B	A
- Queue Length 95th (ft)	40	40	0	0	0	0
- Approach Delay (s)	21.1	-	0.0	-	-	0.0

Table 59 -Int. 5-2049 Horizon Year Peak Hr MOEs With the Development

HCM 2000 SIGNING SETTINGS	WBL				SBL	
∞ Lanes and Sharing (\#RL)	* ${ }^{\prime}$		F	T	${ }^{7}$	4
- Traffic Volume (vph)	115	2	696	189	2	602
- Future Volume (vph)	115	2	696	189	2	602
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	12
∞ TWLTL Median	\square	-	\square	-	-	\checkmark
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	6.4	6.2	-	-	4.1	-
- Follow Up Time, tF [s]	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.38	0.38	0.51	0.51	0.00	0.40
- Control Delay [s]	21.7	21.7	0.0	0.0	10.3	0.0
- Level of Service	C	C	A	A	B	A
- Queue Length 95th (ft)	44	44	0	0	0	0
\bigcirc Approach Delay [s]	21.7	-	0.0	-	-	0.0

G. Turn Lane Warrants Based on Safety Analysis of Intersections

1. 2049 Horizon Year Conditions Left Turn Lane Analysis

It was identified that left turn lanes were warranted for the 2024 existing conditions for both intersection 4 and 5. No new turn lanes are warranted between the 2024 existing conditions and the 2049 buildout conditions; see Appendix F for the left-turn worksheets.

2. 2049 Horizon Year Conditions Right Turn Lane Analysis

It was identified that a right turn lane was warranted for the 2024 existing conditions for Intersection 5. No new turn lanes are warranted between the 2024 existing conditions and the 2049 buildout conditions; see Appendix G for the right-turn worksheets.

H. Analysis of 2049 Horizon Year PM Peak Hr Traffic Conditions Summary

This chapter has identified the following:

1. Segments

The following table is a summary of each segment's LOS

Table 60 - 2049 Horizon Year Segments Traffic Condition Summary

Segment 1	2024 (Existing)		2029 Buildout		2049 Horizon	
Hwy 33	Value	LOS	Value	LOS	Value	LOS
FFS (mph)	63.25	n/a	63.25	n/a	63.25	n/a
ATS (mph)	54.48	B	53.47	B	49.97	C
PTSF (\%)	53.1\%	B	57.2\%	C	77.0\%	D
v/c Ratio	0.2	B	0.24	C	0.41	D
Segment 2	2024 (Existing)		2029 Buildout		2049 Horizon	
$\begin{gathered} \text { 2000S (from Hwy } \\ 33 \text { to } 5750 \mathrm{~N} \text {) } \end{gathered}$	Value	LOS	Value	LOS	Value	LOS
FFS (mph)	40	n/a	40	n/a	40	n/a
PFFS (\%)	97.1\%	A	95.3\%	A	92.4\%	A
v/c Ratio	0.04	A	0.07	A	0.11	A

a. Segment Summary

As can be seen in the above table, each segment is forecasted to operate at an acceptable level.

2. Intersections

The following tables show each intersection's LOS for the 2049 horizon year conditions.

Table 61 -Int. 12049 Horizon Year Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	n/a	n/a	n/a	2	n/a	2	n/a	20	20	2	14	n/a
LOS	n/a	n/a	n/a	A	n/a	A	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	8.7	n/a	8.7	n/a	0	0	0	0.8	n/a

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	n/a	n/a	n/a	2	n/a	19	n/a	20	20	11	14	n/a
LOS	n/a	n/a	n/a	A	n/a	A	n/a	A	A	A	A	n/a
Delay	n/a	n/a	n/a	8.6	n/a	8.6	n/a	0	0	0.1	3.2	n/a

Table 62 -Int. 22049 Horizon Year Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	14	n/a	6	n/a	n/a	n/a	2	154	n/a	n/a	100	2
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	10	n/a	10	n/a	n/a	n/a	0	0.1	n/a	n/a	0	0

Int 2-6500N/500W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	14	n/a	15	n/a	n/a	n/a	19	154	n/a	n/a	100	2
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	9.9	n/a	9.9	n/a	n/a	n/a	0.1	1	n/a	n/a	0	0

Table 63 -Int. 32049 Horizon Year Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	20	26	6	48	30	14	24	122	30	26	54	20
LOS	A	A	A	A	A	A	A	A	A	A	A	A
Delay	8.3	8.3	8.3	8.6	8.6	8.6	8.9	8.9	8.9	8.3	8.3	8.3

Int 3-5750N/500W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	23	26	6	48	30	14	24	136	30	26	61	22
LOS	A	A	A	A	A	A	A	A	A	A	A	A
Delay	8.4	8.4	8.4	8.7	8.7	8.7	9.1	9.1	9.1	8.5	8.5	8.5

Table 64 -Int. 42049 Horizon Year Intersection Traffic Condition Summary without and with the development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	54	602	n/a	n/a	696	2	n/a	n/a	n/a	2	n/a	74
LOS	A	A	n/a	n/a	A	A	n/a	n/a	n/a	C	n/a	C
Delay	9.8	0	n/a	n/a	0	0	n/a	n/a	n/a	17.1	n/a	17.1

Int 4 - Hwy 33/5750W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	57	602	n/a	n/a	696	2	n/a	n/a	n/a	2	n/a	76
LOS	A	A	n/a	n/a	A	A	n/a	n/a	n/a	C	n/a	C
Delay	9.8	0	n/a	n/a	0	0	n/a	n/a	n/a	17.2	n/a	17.2

Table 65 -Int. 52049 Horizon Year Intersection Traffic Condition Summary without and with the development

Int 5 - Hwy 33/500w - Build LOS and Delay Times without the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	n/a	n/a	n/a	108	n/a	2	n/a	696	175	2	602	n/a
LOS	n/a	n/a	n/a	C	n/a	C	n/a	A	A	V	A	n/a
Delay	n/a	n/a	n/a	21.1	n/a	21.1	n/a	0	0	10.3	0	n/a

Int 5 - Hwy 33/500W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2049 Traffic	n/a	n/a	n/a	115	n/a	2	n/a	696	189	2	602	n/a
LOS	n/a	n/a	n/a	C	n/a	C	n/a	A	A	B	A	n/a
Delay	n/a	n/a	n/a	21.7	n/a	21.7	n/a	0	0	10.3	0	n/a

a. Intersection Summary

As can be seen in the above tables, all five (5) intersections are forecasted to operate at an acceptable level for the 2049 horizon year.

3. Turn Lane Analysis

a. Left Turn Lane Analysis

The following left turn lane(s) are warranted for the 2049 horizon year traffic (between 2029 and 2049).

* None

b. Right Turn Lane Analysis

The following right turn lane(s) are warranted for the 2049 horizon year traffic (between 2029 and 2049).

* None

4. Review of the 2024 Existing Conditions

a. 2024 Existing Conditions Review

This section is a review from Chapter 4. The following was determined to be operating at an unacceptable level for the 2024 existing conditions:

* Int. 4 Hwy 33/5750W: Eastbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Southbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Northbound right-turning traffic exceeds the minimum safety levels

b. Mitigation Measures for the 2024 Existing Conditions

It is recommended that a left turn lane or a two way left turn lane (TWLTL) be constructed on Hwy 33 at both intersections 4 and 5. Additionally, it is recommended that a right turn lane be constructed at Intersection 5 for the current 2024 existing conditions.

5. Review of the 2029 Buildout Conditions

a. 2029 Existing Conditions Review

This section is a review from Chapter 6. The following was forecasted to be operating at an unacceptable level for the 2029 buildout conditions:

* None
b. Mitigation Measures for the 2029 Buildout Conditions

No mitigation measures are warranted for the 2029 buildout conditions.

6. Overall Summary for the $\mathbf{2 0 4 9}$ Horizon Year Conditions

a. 2049 Horizon Year Conditions Review

The following was forecasted to be operating at an unacceptable level for the 2049 horizon year conditions:

* None
b. Mitigation Measures for the 2049 Horizon Year Conditions

No mitigation measures are warranted for the 2049 horizon year conditions.

VIII. Conclusions.

After evaluating the proposed development within the context of zoning; projected land use; existing transportation system; background traffic counts for the principal roadways within the study impact area; projected traffic for horizon years corresponding with project opening, project buildout, and a 20 -year horizon year; the findings of the Traffic Impact Study are summarized below. In order to simplify the forecasted traffic conditions as they have progressed through this study, the following three (3) tables were produced. The first table shows the forecasted progression of the roadway segments, the second table shows the intersections, and the third shows the left or right turn lanes. It should be noted by constructing the left turn lane or TWLTL at Intersection 5 for safety for the 2024 existing conditions, the LOS improved for the 2029 buildout year (this is highlighted in orange in Table 67).

Table 66-Segment Traffic Conditions Progression Each Horizon Year

Segment 1	2024 (Existing)		2029 Buildout		2049 Horizon	
Hwy 33	Value	LOS	Value	LOS	Value	LOS
FFS (mph)	63.25	n/a	63.25	n/a	63.25	n/a
ATS (mph)	54.48	B	53.5	B	49.97	C
PTSF (\%)	53.1%	B	57.2%	C	77.0%	D
v/c Ratio	0.2	B	0.24	C	0.41	D

Segment 2	2024 (Existing)		2029 Buildout		2049 Horizon	
2000S (from Hwy 33 to 5750N)	Value	LOS	Value	LOS	Value	LOS
FFS (mph)	40	n / a	40	n / a	40	n / a
PFFS (\%)	97.1%	A	95.3%	A	92.4%	A
v/c Ratio	0.04	A	0.07	A	0.11	A

Table 67- Intersection Traffic Conditions Progression Each Horizon Year

Int 1: 6500N/1750W	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	n / a	A	A	A
2029 Background Traffic	n / a	A	A	A
2029 Background plus Site Traffic	n / a	A	A	A
2049 Background Traffic	n / a	A	A	A
2049 Background plus Site Traffic	n / a	A	A	A

Int 2: 6500N/500w	Eastbound Max L0S	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	A	n / a	A	A
2029 Background Traffic	A	n / a	A	A
2029 Background plus Site Traffic	A	n / a	A	A
2049 Background Traffic	A	n / a	A	A
2049 Background plus Site Traffic	A	n / a	A	A

Int 3: 5750N/500W	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	A	A	A	A
2029 Background Traffic	A	A	A	A
2029 Background plus Site Traffic	A	A	A	A
2049 Background Traffic	A	A	A	A
2049 Background plus Site Traffic	A	A	A	A

Int 4: Hwy 33/5750N	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2024 Existing Traffic	A	A	n / a	B
2029 Background Traffic	A	A	n / a	B
2029 Background plus Site Traffic	A	A	n / a	B
2049 Background Traffic	A	A	n / a	C
2049 Background plus Site Traffic	A	A	n / a	C

Int 5: Hwy 33/500w	Eastbound Max L0S	Westbound Max L0S	Northbound Max L0S	Southbound Max LOS
2024 Existing Traffic	n/a	C	A	A
2029 Background Traffic	n/a	B	A	A
2029 Background plus Site Traffic	n/a	B	A	A
2049 Background Traffic	n / a	C	A	A
2049 Background plus Site Traffic	n / a	C	A	B

Table 68- Left and Right Turn Lane Progression Each Horizon Year

Int 4: Hwy 33/5750N		Left Turn Lane		Right Turn Lane	
	Eastbound	Westbound	Eastbound	Westbound	
2024 Existing Traffic	Warranted	n / a	n / a	Not Warranted	
2029 Background Traffic	Warranted	n / a	n / a	Not Warranted	
2029 Background plus Site Traffic	Warranted	n / a	n / a	Not Warranted	
2049 Background Traffic	Warranted	n / a	n / a	Not Warranted	
2049 Background plus Site Traffic	Warranted	n / a	n / a	Not Warranted	

Int 5: Hwy 33/500N		Left Turn Lane		Right Turn Lane	
	Northbound	Southbound	Northbound	Southbound	
2024 Existing Traffic	n/a	Warranted	Warranted	n/a	
2029 Background Traffic	n/a	Warranted	Warranted	n/a	
2029 Background plus Site Traffic	n/a	Warranted	Warranted	n/a	
2049 Background Traffic	n/a	Warranted	Warranted	n/a	
2049 Background plus Site Traffic	n/a	Warranted	Warranted	n/a	

A. Existing Traffic Conditions (2024)

The existing traffic conditions were analyzed with the existing intersection control and lane configurations, all the road segments and intersections are operating within minimum operational thresholds except:

* Int. 4 Hwy 33/5750W: Eastbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Southbound left-turning traffic exceeds the minimum safety levels
* Int. 5 Hwy 33/500W: Northbound right-turning traffic exceeds the minimum safety levels

1. Existing $\mathbf{2 0 2 4}$ Traffic Mitigating Measures

It is recommended that a left turn lane or a two way left turn lane (TWLTL) be constructed on Hwy 33 at both intersections 4 and 5. Additionally, it is recommended that a right turn lane be constructed at Intersection 5 to accommodate the existing 2024 traffic safely.

B. 2029 Buildout Year Traffic Conditions Results

All segment capacity and intersection delay times/LOS are projected to operate within the minimum allowable operational thresholds for the 2029 buildout year.

1. 2029 Buildout Mitigating Measures

For the 2029 buildout scenario no deficiencies were forecasted, therefore no mitigation measures are recommended.

C. 2049 Horizon Year Traffic Conditions Results

All segment capacity and intersection delay times/LOS are projected to operate within the minimum allowable operational thresholds for the 2049 horizon year.

1. 2049 Horizon Year Mitigating Measures

For the 2049 horizon year scenario no deficiencies were forecasted, therefore no mitigation measures are recommended.

D. Overall Study Summary

As can be seen from the tables in this chapter, the development is forecasted to have minimal impact to the traffic network within the study area. All segments are forecasted to operate below the allowable operation thresholds throughout the study time period. All intersections are forecasted to operate below the allowable operation thresholds throughout the study time period.

Although the traffic is forecasted to operate at an acceptable level, in order to meet ITD's minimum safety guidelines on Hwy 33, left turns lanes or a two way left turn lane (TWLTL) for both intersections 4 and 5 along with a right turn lane at Intersection 5 is warranted with or without the development.

IX. Appendix A: Site Master Plan

Civilize, PLLC

X. Appendix B: Traffic Counts

Civilize, PLLC
Project Analysis Worksheet
Tranportation Engineering
Traffic Volume Count Intersection Tally Sheet - One Hour

Civilize, PLLC
Management and Engineering
Project Analysis Worksheet
Tranportation Engineering
Traffic Volume Count Intersection Tally Sheet - One Hour

Civilize, PLLC
Management and Engincering
Project Analysis Worksheet
Tranportation Engineering
Traffic Volume Count Intersection Tally Sheet - One Hour

Civilize, PLLC
Management and Engineering

Civilize, PLLC

Management and Engineering

\#059 - Newdale - ATR Average Daily Traffic Published Reports

Automatic Counter Volumes

Report Types

Year Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 24-Hour Annual Avg. 199083589512301375142815051876177713891396109110471324 1991859102110691327146116161820179915211580106610611352 1992102911311242155716351761207918771696134811499051455 199383591512081463166917062053183817241550116811591444 19941145113814151729167418422147283217621579123411721575 19951211124516601919215718832208214319221788148714091746 19961025128215281739176518862188287118141653127318491606 19971072123013291639189319972297219419361704142713991676 19981141128014791678186019012201217619351786146613531688 19991331130216041764189620842479239221241651147314331794 20001120131015781763182420382352234919831825150614841761 20011451151616951906199921222379233621551893166215711890 20021305148017861819204821522574245122582065175217231951 20031635163717371899210322022438239321211955164216271949 20041371159617851949203121702614238022271955181318161976 20051584174618461992219023632600239521082085176218222041 20061611173418702011229425072706276625002370197820792202 20071967217923212417266629803089331429772726235121732597 20081806170321702158230625332714253823412222184616322164 20091660172117681911218024832625241124142062170417002053 20101659171217931814203623602668232122632024158515181979 20111519150516671679188720972482223421801909150515351850 20121461156616151802184421552352221220441747151815671824 20131416153016041741189423062410210719761874162216121841 20141562155618051907199524402480229322172018170117301975 20151732183319202084208925082879268825222255195718612194 20161826208021472219236727443115295426552293201118382347 20171804191821542322252929913293340228802633226422512537 20182191215222462444273331463470316431262853229621692666 $201921391706 \quad 2604276431893526343430842666239523182697$ 20202157225719711920265130783430356534613015245424602701 20212519212927022809327639484073352930452528234922872933 20222357254727302777324237914219414541353685286925333253 20232692256526452918349640224447413941223764317228743405 202426762897

Idaho Transportation Department

Monthly Hourly Day of Week Summary for March 2023

XI. Appendix C: 2024 Existing Conditions Traffic Model Results

Northern Lights Addendum 2-2024 Existing Conditions - Intersection 2

Northern Lights Addendum 2-2024 Existing Conditions - Intersection 3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuratons		4			$\boldsymbol{4}$			4			$\boldsymbol{4}$	
Traffc Vol, veh/h	10	13	3	24	15	7	12	61	15	13	27	10
Future Vol, veh/h	10	13	3	24	15	7	12	61	15	13	27	10
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	5	5	5	5	5	5	5	5	5	5	5	5
Mmut Flow	11	15	3	27	17	8	14	69	17	15	31	11
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	1	1
Conficing Approach Let	SB	NB	EB	WB
Conficfing Lanes Lef	1	1	1	1
Conficing Approach Right	NB	SB	WB	EB
Conficing Lanes Right	1	1	1	1
HCM Control Delay	7.6	7.7	7.7	7.5
HCM LOS	A	A	A	A

	NBLn1	EBLn1	WBLn1	SBLn1
Lane	14%	38%	52%	26%
Vol Lett, \%	69%	50%	33%	54%
Vol Thru, \%	17%	12%	15%	20%
Vol Right, \%	Stop	Stop	Stop	Stop
Sign Control	88	26	46	50
Traffic Vol by Lane	12	10	24	13
LT Vol	61	13	15	27
Through Vol	15	3	7	10
RT Vol	100	30	52	57
Lane Flow Rate	1	1	1	1
Geometry Grp	0.114	0.035	0.062	0.065
Degree of Utl (X)	4.094	4.306	4.293	4.134
Departure Headway (Hd)	Yes	Yes	Yes	Yes
Converqence, Y/N	868	819	823	857
Cap	2.156	2.396	2.376	2.206
Service Time	0.115	0.037	0.063	0.067
HCM Lane V/C Rato	7.7	7.6	7.7	7.5
HCM Control Delay	A	A	A	A
HCM Lane LOS	0.4	0.1	0.2	0.2
HCM 95n-Sle Q				

Northern Lights Addendum 2-2024 Existing Conditions - Intersection 4

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Confgurations		-	¢		4		
Traffic Volume (veh/h)	27	300	347	1	1	37	
Future Volume (Veh/h)	27	300	347	1	1	37	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Hourly flow rate (vph)	31	341	394	1	1	42	
Pedestrians							
Lane Width (t)							
Waking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (t)							
pX , platoon unblocked							
VC, conficing volume	395				798	394	
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu, unblocked vol	395				798	394	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free \%	97				100	94	
cM capacity (veh/h)	1147				342	648	
Direction, Lane \#	EB 1	WB 1	SB 1				
Volume Total	372	395	43				
Volume Left	31	0	1				
Volume Right	0	1	42				
CSH	1147	1700	635				
Volume to Capacity	0.03	0.23	0.07				
Queue Length 95t (t)	2	0	5				
Control Delay (s)	0.9	0.0	11.1				
Lane LOS	A		B				
Approach Delay (s)	0.9	0.0	11.1				
Approach LOS			B				
Intersection Summary							
Average Delay			1.0				
Intersection Caoacity Utilization			52.6\%		ICU Level	f Service	A
Analysis Period (min)			15				

Northern Lights Addendum 2-2024 Existing Conditions - Intersection 5

XII. Appendix D: 2029 Buildout Traffic Model Results

Without the Development

With the Development

Northern Lights Addendum 2-2029 With the Development - Intersection 1

Without the Development

Northern Lights Addendum 2-2029 Without the Development - Intersection 2

With the Development

Without the Development

Northern Lights Addendum 2-2029 Without the Development - Intersection 3

Intersection												
Intersection Delay, s/veh Intersection LOS	7.7											
	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Confguratons		4			4			4			4	
Trafic Vol, veh/h	11	15	3	28	17	8	14	70	17	15	31	11
Future Vol, veh/h	11	15	3	28	17	8	14	70	17	15	31	11
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	5	5	5	5	5	5	5	5	5	5	5	5
Mumt Flow	13	17	3	32	19	9	16	80	19	17	35	13
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conficing Approach Lett	SB			NB			EB			WB		
Conficting Lanes Left	1			1			1			1		
Conficing Approach Right	NB			SB			WB			EB		
Conficsing Lanes Right	1			1			1			1		
HCM Control Delay	7.7			7.8			7.8			7.6		
HCM LOS	A			A			A			A		

Lane	NBLn 1	EBLn1	WBLn1	SBLn 1
Vol Lett, \%	14\%	38\%	53\%	26\%
Vol Thru, \%	69\%	52\%	32\%	54\%
Vol Right, \%	17\%	10\%	15\%	19\%
Sign Control	Stop	Stop	Stop	Stop
Trafic Vol by Lane	101	29	53	57
LT Vol	14	11	28	15
Through Vol	70	15	17	31
RT Vol	17	3	8	11
Lane Flowi Rate	115	33	60	65
Geometry Grp	1	1	1	1
Degree of UEl (X)	0.131	0.041	0.073	0.075
Departure Headway (Hd)	4.124	4.464	4.336	4.172
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	858	807	812	846
Service Time	2.2	2.464	2.436	2.259
HCM Lane V/C Rato	0.134	0.041	0.074	0.077
HCM Control Delay	7.8	7.7	7.8	7.6
HCM Lane LOS	A	A	A	A
HCM 95n-tle Q	0.5	0.1	0.2	0.2

With the Development

Northern Lights Addendum 2-2029 With the Development - Intersection 3

Intersection	
Intersection Delay, s/veh $\quad 7.9$	
intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Conigurafons		$\mathbf{4}$			$\boldsymbol{4}$			4			$\boldsymbol{4}$	
Trafic Vol, veh/n	14	15	3	28	17	8	14	84	17	15	38	13
Future Vol, veh/h	14	15	3	28	17	8	14	84	17	15	38	13
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	5	5	5	5	5	5	5	5	5	5	5	5
Mvmt Floww	16	17	3	32	19	9	16	95	19	17	43	15
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0

Approach	EB	WB	NB	SB
Opoosing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	1	1
Conficing Approach Let	SB	NB	EB	WB
Conficing Lanes Let	1	1	1	1
Conficing Approach Right	NB	SB	WB	EB
Conficing Lanes Right	1	1	1	1
HCM Control Delay	7.8	A	8	7.7
HCM LOS	A		A	A

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	12\%	44\%	53\%	23\%
Vol Thru, \%	73\%	47\%	32\%	58\%
Vol Right, \%	15\%	9\%	15\%	20\%
Sign Control	Stop	Stop	Stop	Stop
Trafic Vol by Lane	115	32	53	66
LT Vol	14	14	28	15
Through Vol	84	15	17	38
RT Vol	17	3	8	13
Lane Flow Rate	131	36	60	75
Geometry Grp	1	1	1	1
Degree of UEl (X)	0.151	0.046	0.075	0.087
Deparure Headway (Hd)	4.146	4.543	4.501	4.181
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	852	793	800	842
Service Time	2.233	2.545	2.502	2.281
HCM Lane V/C Rafo	0.154	0.045	0.075	0.089
HCM Control Delay	8	7.8	7.9	7.7
HCM Lane LOS	A	A	A	A
HCM 95n-fle Q	0.5	0.1	0.2	0.3

Without the Development

With the Development

Northern Lights Addendum 2-2029 With the Development - Intersection 4

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Confgurations	\%	4	¢		M		
Trafic Volume (veh/h)	33	345	399	1	1	45	
Future Volume (Veh/h)	33	345	399	1	1	45	
Sign Control		Free	Free		Stop		
Grade		0\%	0\%		0\%		
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Hourly fow rate (vph)	38	392	453	1	1	51	
Pedestrians							
Lane Width (it)							
Walking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type		TWLTL	TWLTL				
Median storage veh)		2	2				
Upstream signal (t)							
pX , platoon unblocked							
VC , conficing volume	454				922	454	
VC1, stage 1 conf vol					454		
$v C 2$, stage 2 conf vol					468		
vCu , unblocked vol	454				922	454	
tC. single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					5.4		
tF (s)	2.2				3.5	3.3	
p0 queue free \%	97				100	92	
cM capacity (veh/h)	1091				495	600	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1			
Volume Total	38	392	454	52			
Volume Left	38	0	0	1			
Volume Right	0	0	1	51			
CSH	1091	1700	1700	598			
Volume to Capacity	0.03	0.23	0.27	0.09			
Queue Length 95th (i)	3	0	0	7			
Control Delay (s)	8.4	0.0	0.0	11.6			
Lane LOS	A			B			
Approach Delay (s)	0.7		0.0	11.6			
Approach LOS	B						
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Utization			40.2\%		ICU Level	Service	A
Analysis Period (min)			15				

Without the Development

With the Development

Northern Lights Adde	endu	2-2	029 V	th th	te Deve	opme	
	6	4	4	p	b	\dagger	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Conigurations	${ }^{7}$		¢	7	\%	4	
Trafic Volume (veh/h)	69	1	399	114	1	345	
Future Volume (Veh/h)	69	1	399	114	1	345	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Hourly fow rate (voh)	78	1	453	130	1	392	
Pedestrians							
Lane Wioth (i)							
Waking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type			None			TWLTL	
Median storage veh)						2	
Upstream signal (t)							
pX , platoon unblocked							
VC . conficing volume	847	453			583		
$\mathrm{vC1}$, stage 1 conf vol	453						
VC2, stage 2 conf vol	394						
VCu , unblocked vol	847	453			583		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
tF (s)	3.5	3.3			2.2		
p0 queue free \%	85	100			100		
cM capacity (veh/h)	531	601			977		
Direction, Lane \#	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	79	496	87	1	392		
Volume Lef.	78	0	0	1	0		
Volume Right	1	43	87	0	0		
CSH	532	1700	1700	977	1700		
Volume to Capacity	0.15	0.29	0.05	0.00	0.23		
Queue Length 95th (t)	13	0	0	0	0		
Control Delay (s)	12.9	0.0	0.0	8.7	0.0		
Lane LOS	B			A			
Approach Delay (s)	12.9	0.0		0.0			
Approach LOS	B						
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Ufilization			37.1\%		CU Level of	of Service	A
Analysis Period (min)			15				

XIII. Appendix E: 2049 Horizon Year Traffic Analysis

Without the Development

With the Development

Northern Lights Addendum 2 - 2029 With the Development - Intersection							
	6	4	\dagger	p	\downarrow	\dagger	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Confgurations	Y		4			-	
Trafic Volume (veh/h)	2	19	20	20	11	14	
Future Volume (Veh/h)	2	19	20	20	11	14	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Hourly flow rate (voh)	2	22	23	23	12	16	
Pedestrians							
Lane Wioth (i)							
Walking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (t)							
pX , platoon unblocked							
VC, conficing volume	74	34			46		
VCl , stage 1 conf vol							
$\mathrm{VC2}$, stage 2 conf vol							
vCu, unblocked vol	74	34			46		
tC., single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	100	98			99		
cM capacity (veh/h)	914	1030			1543		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	24	46	28				
Volume Let	2	0	12				
Volume Right	22	23	0				
CSH	1019	1700	1543				
Volume to Capacity	0.02	0.03	0.01				
Queue Lengt 95n (t)	2	0	1				
Control Delay (s)	8.6	0.0	3.2				
Lane LOS	A		A				
Approach Delay (s)	8.6	0.0	3.2				
Approach LOS	A						
Intersection Summary							
Average Delay			3.0				
Intersection Capacity Ufirizaton			18.2\%		CU Level	f Service	A
Analysis Period (min)			15				

Without the Development

With the Development

Northern Lights Addendum 2-2029 With the Development - Intersection 2

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Confgurations	M			4	ち		
Trafic Volume (veh/h)	14	15	19	154	100	2	
Future Volume (Veh/h)	14	15	19	154	100	2	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Hourly fow rate (vph)	16	17	22	175	114	2	
Pedestrians							
Lane Widh (t)							
Walking Speed (t/s)							
Percent Blockage							
Right tum flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (i)							
pX , platoon unblocked							
VC , conficing volume	334	115	116				
vC1, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	334	115	116				
tC. single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free \%	98	98	98				
cM capacity (veh/h)	645	929	1454				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	33	197	116				
Volume Left	16	22	0				
Volume Right	17	0	2				
CSH	766	1454	1700				
Volume to Capacity	0.04	0.02	0.07				
Queue Length 95th (t)	3	1	0				
Control Delay (s)	9.9	1.0	0.0				
Lane LOS	A	A					
Approach Delay (s)	9.9	1.0	0.0				
Approach LOS	A						
Intersection Summary							
Average Delay			1.5				
Intersection Capacity Ufilization			26.9\%		ICU Level	f Service	A
Analysis Period (min)			15				

Without the Development

Northern Lights Addendum 2-2029 Without the Development - Intersection 3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Coniguratons		4			4			4			4	
Trafic Vol, veh/h	20	26	6	48	30	14	24	122	30	26	54	20
Future Vol, veh/h	20	26	6	48	30	14	24	122	30	26	54	20
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	5	5	5	5	5	5	5	5	5	5	5	
Mumt Flow	23	30	7	55	34	16	27	139	34	30	61	23
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opoosing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conficting Approach Let	SB			NB			EB			WB		
Conficing Lanes Left	1			1			1			1		
Conficting Approach Right	NB			SB			WB			EB		
Conficting Lanes Right	1			1			1			1		
HCM Control Delay	8.3			8.6			8.9			8.3		
HCM LOS	A			A			A			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Lett, \%	14%	38%	52%	26%
Vol Thru, \%	69%	50%	33%	54%
Vol Right, \%	17%	12%	15%	20%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	176	52	92	100
TT Vol	24	20	48	26
Through Vol	122	26	30	54
RT Vol	30	6	14	20
Lane Flow Rate	200	59	105	114
Geometry Grp	1	1	1	1
Degree of Uti (X)	0.247	0.08	0.139	0.143
Deparure Headway (Hd)	4.442	4.844	4.791	4.542
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	810	739	749	790
Service Time	2.466	2.878	2.822	2.571
HCM Lane V/C Rato	0.247	0.08	0.14	0.144
HCM Control Delay	8.9	8.3	8.6	8.3
HCM Lane LOS	A	A	A	A
HCM 95n-tle Q	1	0.3	0.5	0.5

With the Development

Northern Lights Addendum 2-2029 With the Development - Intersection 3

Intersection												
Intersection Delay, s/veh	8.8											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Confguratons		4			4			4			4	
Trafic Vol, veh/h	23	26	6	48	30	14	24	136	30	26	61	22
Future Vol, veh/h	23	26	6	48	30	14	24	136	30	26	61	22
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	5	5	5	5	5	5	5	5	5	5	5	5
Mumt Flow	26	30	7	55	34	16	27	155	34	30	69	25
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conficing Approach Let	SB			NB			EB			WB		
Conficting Lanes Let.	1			1			1			1		
Conficing Approach Right	NB			SB			WB			EB		
Conficting Lanes Right	1			1			1			1		
HCM Control Delay	8.4			8.7			9.1			8.5		
HCM LOS	A			A			A			A		
Lane		NBLn 1	EBLn1	WBLn1	SBLn1							
Vol Let, \%		13\%	42\%	52\%	24\%							
Vol Thru, \%		72\%	47\%	33\%	56\%							
Vol Right, \%		16\%	11\%	15\%	20\%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		190	55	92	109							
LT Vol		24	23	48	26							
Through Vol		136	26	30	61							
RT Vol		30	6	14	22							
Lane Flowi Rate		216	63	105	124							
Geometry Grp		1	1	1	1							
Degree of UEl (X)		0.268	0.085	0.141	0.157							
Deparure Headway (Hd)		4.47	4.917	4.857	4.567							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		803	727	737	784							
Service Time		2.498	2.957	2.893	2.599							
HCM Lane V/C Rato		0.269	0.087	0.142	0.158							
HCM Control Delay		9.1	8.4	8.7	8.5							
HCM Lane LOS		A	A	A	A							
HCM 95n-fle Q		1.1	0.3	0.5	0.6							

Without the Development

Northern Lights Addendum 2-2029 Without the Development - Intersection 4

With the Development

Without the Development

With the Development

Northern Lights Addendum 2-2029 With the Development - Intersection 5							
	6	4	9	p	t	\dagger	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Conigurations	Y		¢	\%	\%	4	
Traffic Volume (veh/h)	115	2	696	189	2	602	
Future Volume (Veh/h)	115	2	696	189	2	602	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	
Hourly flow rate (vph)	131	2	791	215	2	684	
Pedestrians							
Lane Width (i)							
Walking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type			None			TWLTL	
Median storage veh)						2	
Upstream signal (t)							
pX , platoon unblocked							
VC, conficing volume	1479	791			1006		
$\mathrm{VC1}$, stage 1 conf vol	791						
$\mathrm{vC2}$, stage 2 conf vol	688						
vCu, unblocked vol	1479	791			1006		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	5.4						
$\mathrm{tF}^{(\mathrm{s})}$	3.5	3.3			2.2		
p0 queue free \%	62	99			100		
cM capacity (veh/h)	346	385			677		
Direction, Lane \#	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	133	863	143	2	684		
Volume Let	131	0	0	2	0		
Volume Right	2	72	143	0	0		
CSH	347	1700	1700	677	1700		
Volume to Capacity	0.38	0.51	0.08	0.00	0.40		
Queue Length 95n (t)	44	0	0	0	0		
Control Delay (s)	21.7	0.0	0.0	10.3	0.0		
Lane LOS	c			B			
Approach Delay (s)	21.7	0.0		0.0			
Approach LOS	c						
Intersection Summary							
Average Delay			1.6				
Intersection Capacity Ufilization			59.1\%		ICU Level	of Service	B
Analysis Period (min)			15				

XIV. Appendix F: Left Turn Lane Warrant Analyses

Civilize, PLLC

Project Analysis Worksheet
Tranportation Engineering
Management and Engineering Left Hand Turn Analysis/Warrant at Unsignalized Intersections Based on ITD Traffic Manual / NCHRP Report 745

2 Check the plotted point(s) on the chart below against the anticpated intersection of major-road volume and peak-hour left-turn volume in the volume advancing.

Civilize, PLLC

Project Analysis Worksheet
Management and Engineering

Tranportation Engineering

Left Hand Turn Analysis/Warrant at Unsignalized Intersections Based on ITD Traffic Manual / NCHRP Report 745

2 Check the plotted point(s) on the chart below against the anticpated intersection of major-road volume and peak-hour left-turn volume in the volume advancing.

Figure 5. Typical left-turn lane layout.

XV. Appendix G: Right Turn Lane Warrant Analyses

Civilize, PLLC

Project Analysis Worksheet Tranportation Engineering

Management and Engineering

Right-Hand Turn Analysis/Warrant for Uncontrolled Roads Intersecting with Public Highways/Approaches Based on ITD Traffic Manual

2 Check the plotted point(s) on the chart below against the anticpated intersection of major-road volume and peak-hour left-turn volume in the volume advancing.

XVI.
 Appendix H: Segment LOS Calculations

2024 - Seg 1 - Hwy 33

Civilize, PLLC
Management and Engineering

Project Analysis Worksheet Tranportation Engineering Segment Los for Class I Two-Lane Rural Highway

2024 - Seg 2 - 500W
Civilize, PLLC
Project Analysis Worksheet
Management and Engineering

2029 - Seg 1 - Hwy 33

Project Analysis Worksheet Tranportation Engineering Segment LOS for Class I Two-Lane Rural Highway

2029 - Seg 2 - 500W

Civilize, PLLC
Project Analysis Worksheet Tranportation Engineering

Management and Engineering

2049 - Seg 1 - Hwy 33

Project Analysis Worksheet Tranportation Engineering Segment LOS for Class I Two-Lane Rural Highway

2049 - Seg 2 - 500W

Civilize, PLLC
Project Analysis Worksheet Tranportation Engineering

Management and Engineering

