Tony \& Anne Campbell

Northern Lights Traffic Impact Study v1-2

Civilize, PLLC

 Management and Engineering Puc - IPagebcrowther@civilize.design
3853 W. Mountain View Drive
Rexburg, ID 83440
208-351-2824
3/6/2023

Traffic Impact Study Disclaimer

All recommendations and/or advice presented in this document regarding probably project conditions are the opinions of Civilize, PLLC. Project conditions are based on information and data sources that are readily available from the public sector, provided by the project owner, previously published studies by other competent professionals, and other reliable sources including state agencies and local municipal government entities, all of which are relied upon as accurate. Our recommendations and/or advice are made on the basis of our experience and represent our judgment and opinions. We have no control over new and/or non-public information, changed conditions, cost of land, cost of labor, materials, equipment, and/or other construction costs, or over competitive bidding or market conditions. Therefore, we do not guarantee that actual conditions or actual costs will not vary from those presented in this report.

Table of Contents

I. Executive Summary 1
A. Site Location and Study Area 1

1. Development Description and Phasing 2
B. Conclusions and Recommendations 2
C. Existing Traffic Conditions (2022) 4
D. Projected Traffic 4
E. 2027 Buildout Year Traffic Conditions Results 4
F. 2047 Horizon Year Traffic Conditions Results 5
G. Overall Study Summary 5
II. Introduction and Summary 6
A. Project Identification 6
B. Location 7
C. Applicable Regulations 7
D. Purpose of Report and Study Objectives 8
III. Proposed Development 8
A. Description of On-Site Development 8
2. Description 8
3. Location 8
4. Zoning 9
5. Site Plan 9
6. Land Use and Intensity 11
7. Phasing and Timing 11
IV. Study Approach 12
A. Full TIS or Minor TIS 12
B. Study Period 12
C. Segments and Intersections to be Studied 12
D. Study Methodology, Limitations and Assumptions 13
8. Traffic Model 13
9. Anticipated Annual Growth 13
10. Level of Service (LOS) 14
11. Left Turn and Right Turn Lane Warrant Analysis 15
V. Area Conditions 17
A. Study Area 17
12. Area of Influence and Significant Traffic Impact 17
B. Study Area Land Use 18
13. Existing Land Uses 18
14. Existing Zoning 18
15. Anticipated Future Development 18
C. Site Accessibility 18
16. Access Management 20
17. Area Transportation Elements and Roadway System 20
18. Accident History 21
VI. Existing 2022 Traffic Volumes and Conditions 22
A. Traffic Forecasting 22
B. Roadway Network 22
C. Seasonal Adjustment 22
D. Existing 2022 Segment PM Peak Traffic Volumes 22
19. Seg. 1-3000W Existing 2022 PM Peak Hr Flow 22
20. Seg. 2-2000W Existing 2022 PM Peak Hr Flow 23
E. Existing 2022 PM Peak Intersection Traffic Volumes 23
21. Highway 33 Peak Hr Flow. 23
22. Int. 1 - Hwy 33/3000W Peak Hr Volume 24
23. Int. 2 - Hwy 33/2000W Peak Hr Volume 25
24. Int. $3-7000 \mathrm{~N} / 1750 \mathrm{~W}$ Peak Hr Volume 25
25. Int. $4-7000 \mathrm{~N} /$ Solstice Circle East Peak Hr Volume (New Intersection) 26
26. Int. $5-7000 \mathrm{~N} /$ Solstice Circle West Peak Hr Volume (New Intersection) 26
F. Existing 2022 Segment PM Peak Traffic Conditions 26
27. Seg. 1 - 3000W Existing 2022 PM Peak Hr Traffic Conditions 27
28. Seg. 2: 2000W Existing 2022 PM Peak Hr Traffic Conditions 27
G. Existing 2022 Intersection PM Peak Hr Traffic Conditions 27
29. Int. 1 - Hwy 33/3000W Existing 2022 PM Peak Hr Traffic Conditions 28
30. Int. 2 - Hwy 33/2000W Existing 2022 PM Peak Hr Traffic Conditions 28
31. Int. $3-7000 \mathrm{~N} / 1750 \mathrm{~W}$ Existing 2022 PM Peak Hr Traffic Conditions 29
32. Int. $4-7000 \mathrm{~N} /$ Solstice Circle East Existing 2022 PM Peak Hr Traffic Conditions (New Intersection) 29
33. Int. $5-7000 \mathrm{~N} /$ Solstice Circle West Existing 2022 PM Peak Hr Traffic Conditions (New Intersection) 29
H. Turn Lane Warrants Based on Safety Analysis of Intersections 29
34. Existing Conditions Left Turn Lane Analysis 29
35. Existing Conditions Right Turn Lane Analysis 30
I. Analysis of Existing 2022 PM Peak Hr Traffic Conditions Summary 30
36. Segments 30
37. Intersections 30
38. Turn Lane Analysis 31
39. Overall Summary for 2022 31
40. Mitigation Measures for the 2022 Existing Conditions 32
VII. Projected Traffic 33
A. Site Traffic 33
41. Trip Generation 33
42. Trip Distribution 33
43. Modal Split. 34
44. Trip Assignment. 34
B. Through Traffic (Non-Site Traffic). 35
45. Non-Site Traffic for anticipated Development in Study Area 35
C. Total Traffic 35
VIII. 2027 Horizon Year Traffic Analysis (Buildout) 38
A. On-Site Development. 38
B. Traffic Forecasting 38
C. Roadway Network 38
D. 2027 PM Peak Segment Traffic Volumes 38
46. Seg. 1 - 3000W 2027 PM Peak Segment Traffic Volumes 38
47. Seg. $2-2000 W 2027$ PM Peak Segment Traffic Volumes 38
E. 2027 PM Peak Intersection Traffic Volumes 39
48. Int. 1 - Hwy 33/3000W 2027 PM Peak Segment Traffic Volumes 39
49. Int. 2 - Hwy 33/2000W 2027 PM Peak Segment Traffic Volumes 39
50. Int. $3-7000$ N/1750W 2027 PM Peak Segment Traffic Volumes 40
51. Int. $4-7000$ N/Solstice East 2027 PM Peak Segment Traffic Volumes 40
52. Int. 5-7000N/Solstice West 2027 PM Peak Segment Traffic Volumes 41
F. 2027 Segment PM Peak Hr Traffic Conditions 41
53. Seg. 1 - 3000W 2027 PM Peak Hr Segment Traffic Conditions 41
54. Seg. 2 - 2000W 2027 PM Peak Hr Segment Traffic Conditions 42
G. 2027 Intersection PM Peak Hr Traffic Conditions 42
55. Int. 1 - Hwy 33/3000W 2027 PM Peak Hr Traffic Conditions 43
56. Int. 2 - Hwy 33/2000W 2027 PM Peak Hr Traffic Conditions 44
57. Int. $3-7000 \mathrm{~N} / 1750 \mathrm{~W} 2027$ PM Peak Hr Traffic Conditions 45
58. Int. $4-7000 N /$ Solstice Circle East 2027 PM Peak Hr Traffic Conditions (New Intersection).. 46 46
59. Int. 5-7000N/Solstice Circle West 2027 PM Peak Hr Traffic Conditions (New Intersection) 46
H. Turn Lane Warrants Based on Safety Analysis of Intersections 47
60. 2027 Left Turn Lane Analysis 47
61. 2027 Right Turn Lane Analysis 47
I. 2027 PM Peak Hr Traffic Conditions Summary without and with the Development 47
62. Segments 47
63. Intersections 48
64. Turn Lane Analysis 50
65. Overall Summary for 2027 50
66. Mitigation Measures 51
IX. 2047 Horizon Year Traffic Analysis 52
A. On-Site Development 52
B. Traffic Forecasting 52
C. Roadway Network 52
D. 2047 PM Peak Segment Traffic Volumes 52
67. Seg. 1 - 3000W 2047 PM Peak Segment Traffic Volumes 52
68. Seg. 2-2000W 2047 PM Peak Segment Traffic Volumes 52
E. 2047 PM Peak Intersection Traffic Volumes 53
69. Int. 1 - Hwy 33/3000W 2047 PM Peak Segment Traffic Volumes 53
70. Int. 2 - Hwy 33/2000W 2047 PM Peak Segment Traffic Volumes 53
71. Int. $3-7000$ N/1750W 2047 PM Peak Segment Traffic Volumes 54
72. Int. $4-7000 N / S o l s t i c e ~ E a s t ~ 2047 ~ P M ~ P e a k ~ S e g m e n t ~ T r a f f i c ~ V o l u m e s ~$ 54
73. Int. $5-7000$ N/Solstice West 2047 PM Peak Segment Traffic Volumes 55
F. 2047 Segment PM Peak Hr Traffic Conditions 55
74. Seg. 1 - 3000W 2047 PM Peak Hr Segment Traffic Conditions 55
75. Seg. 2 - 2000W 2047 PM Peak Hr Segment Traffic Conditions 56
G. 2047 Intersection PM Peak Hr Traffic Conditions 56
76. Int. 1 - Hwy 33/3000W 2047 PM Peak Hr Traffic Conditions 57
77. Int. 2 - Hwy 33/2000W 2047 PM Peak Hr Traffic Conditions 58
78. Int. $3-7000 \mathrm{~N} / 1750 \mathrm{~W} 2047$ PM Peak Hr Traffic Conditions 59
79. Int. $4-7000 N /$ Solstice Circle East 2047 PM Peak Hr Traffic Conditions (New Intersection) 60
80. Int. $5-7000 N /$ Solstice Circle West 2047 PM Peak Hr Traffic Conditions (New Intersection) 60
H. Turn Lane Warrants Based on Safety Analysis of Intersections 61
81. 2047 Left Turn Lane Analysis 61
82. 2047 Right Turn Lane Analysis 61
I. 2047 PM Peak Hr Traffic Conditions Summary without and with the Development 61
83. Segments 61
84. Intersections 62
85. Turn Lane Analysis. 64
86. Overall Summary for 2047 64
87. Mitigation Measures for the 2047 Horizon Year Traffic 65
X. Conclusions 68
A. Existing Traffic Conditions (2022) .. 70
B. Projected Traffic .. 70
C. 2027 Buildout Year Traffic Conditions Results.. 70
D. 2047 Horizon Year Traffic Conditions Results .. 71
E. Overall Study Summary ... 71
XI. Appendix A: Site Master Plan .. 72
XII. Appendix B: Traffic Counts.. 73
XIII. Appendix C: 2022 Existing Conditions Traffic Model Results .. 78
XIV. Appendix D: 2027 Buildout Traffic Model Results.. 81
XV. Appendix E: 2047 Horizon Year Traffic Analysis ... 90
XVI. Appendix F: Left Turn Lane Warrant Analyses .. 100
XVII. Appendix G: Right Turn Lane Warrant Analyses.. 103
Table of Figures
Figure 1 - Location Map 1
Figure 2 - Location Map 7
Figure 3 - Zoning Map 9
Figure 4 - Site Plan 10
Figure 5 - Segment LOS 15
Figure 6 - Left-Turn Warrant Chart 16
Figure 7 - Right-Turn Warrant Chart 16
Figure 8 - Area of Influence and Significant Traffic Impact. 17
Figure 9 - Teton County Road Classification Map 19
Figure 10 - LHTAC Crash Data 21
Figure 11: Hwy 33 ATR Locations 23
Figure 12: Hwy 33 Mileposts and ADT 24
Figure 13: Existing 2022 Conditions Hwy 33/3000W PM Peak Hr Volume 25
Figure 14: Existing 2022 Conditions Hwy 33/2000W PM Peak Hr Volume 25
Figure 15: Existing 2022 Conditions 7000N/1750W PM Peak Hr Volume 26
Figure 16- Intersection 1 Hwy 33/3000W PM Peak Generated Traffic 35
Figure 17- Intersection 2 Hwy 33/2000W PM Peak Generated Traffic 36
Figure 18- Intersection 3 7000N/1750W PM Peak Generated Traffic 36
Figure 19- Intersection 4 Solstice Circle East PM Peak Generated Traffic 36
Figure 20- Intersection 4 Solstice Circle West PM Peak Generated Traffic 37
Figure 21: Hwy 33/3000W 2027 Traffic Volumes without and with the Development 39
Figure 22: Hwy 33/2000W 2027 Traffic Volumes without and with the Development. 39
Figure 23: 7000N/1750W 2027 Traffic Volumes without and with the Development 40
Figure 24: 7000N/Solstice Circle East 2027 Traffic Volumes with the Development 40
Figure 25: 7000N/Solstice Circle West 2027 Traffic Volumes with the Development 41
Figure 26: Hwy 33/3000W 2047 Traffic Volumes without and with the Development. 53
Figure 27: Hwy 33/2000W 2047 Traffic Volumes without and with the Development 53
Figure 28: 7000N/1750W 2047 Traffic Volumes without and with the Development 54
Figure 29: 7000N/Solstice Circle East 2047 Traffic Volumes with the Development 54
Figure 30: 7000N/Solstice Circle West 2047 Traffic Volumes with the Development 55
Figure 31: 2047 Horizon Year Mitigation Measures Improvements Layout and Volumes 67
Table of Tables
Table 1 - Segment Traffic Conditions Progression Each Horizon Year 2
Table 2 - Intersection Traffic Conditions Progression Each Horizon Year 3
Table 3 - Left and Right Turn Lane Progression Each Horizon Year 4
Table 4 - Project Information Table 6
Table 5 - LOS Criteria for General Two-Lane Highway Segments 14
Table 6 - Control Delay per Vehicle to LOS Correlation Table 15
Table 7 Existing Segment ADT, Peak Hour, and Trip Distribution Volumes 24
Table 8 Level of Service Criteria for General Two-Lane Highway Segments 27
Table 9 -Int. 1 - Existing (2022) Peak Hr MOEs 28
Table 10 -Int. 2 - Existing (2022) Peak Hr MOEs 28
Table 11 -Int. 3 - Existing (2022) Peak Hr MOEs 29
Table 12 -Existing 2022 Segments Traffic Condition Summary 30
Table 13 -Existing 2022 Intersections Traffic Condition Summary 31
Table 14- Land Use and Trip Generation (ADT) for Buildout (2027) 33
Table 15- Land Use and Trip Generation (Peak Hour) for Buildout (2027) 33
Table 16- Trip Distribution (ADT) for Buildout (2027) 33
Table 17- Trip Distribution (Peak Hour) for Buildout (2027) 34
Table 18-Int. 1-2027 Peak Hr MOEs without the Development 43
Table 19 -Int. 1 - 2027 Peak Hr MOEs with the Development 43
Table 20 -Int. 2 - 2027 Peak Hr MOEs without the Development 44
Table 21 -Int. 2 - 2027 Peak Hr MOEs with the Development 44
Table 22 -Int. 3 - 2027 Peak Hr MOEs without the Development 45
Table 23 -Int. 3-2027 Peak Hr MOEs with the Development 45
Table 24 -Int. 4 - 2027 Peak Hr MOEs with the Development 46
Table 25 -Int. 5 - 2027 Peak Hr MOEs with the Development 46
Table 26 -Seg. 1 3000W 2027 Segments Traffic Condition Summary. 48
Table 27 -Seg. 2 2000W 2027 Segments Traffic Condition Summary 48
Table 28 -Int. 12027 Traffic Condition Summary without and with the Development 49
Table 29 -Int. 22027 Traffic Condition Summary without and with the Development 49
Table 30 -Int. 32027 Traffic Condition Summary without and with the Development 50
Table 31 -Int. 42027 Traffic Condition Summary with the Development 50
Table 32 -Int. 52027 Traffic Condition Summary with the Development 50
Table 33 -Int. 1 - 2047 Peak Hr MOEs without the Development 57
Table 34 -Int. 1 - 2047 Peak Hr MOEs with the Development 57
Table 35 -Int. 2 - 2047 Peak Hr MOEs without the Development 58
Table 36 -Int. 2 - 2047 Peak Hr MOEs with the Development 58
Table 37 -Int. 3 - 2047 Peak Hr MOEs without the Development 59
Table 38 -Int. 3-2047 Peak Hr MOEs with the Development 59
Table 39 -Int. 4 - 2047 Peak Hr MOEs with the Development 60
Table 40 -Int. 5-2047 Peak Hr MOEs with the Development 60
Table 41 -Seg. 1 3000W 2047 Segments Traffic Condition Summary 62
Table 42 -Seg. 2 2000W 2047 Segments Traffic Condition Summary 62
Table 43 -Int. 12047 Traffic Condition Summary without and with the Development 63

Table 44 -Int. 22047 Traffic Condition Summary without and with the Development63
Table 45 -Int. 32047 Traffic Condition Summary without and with the Development 64
Table 46 -Int. 42047 Traffic Condition Summary with the Development 64
Table 47 -Int. 52047 Traffic Condition Summary with the Development 64
Table 48 -Int. 2-2047 Peak Hr MOEs with the Development Mitigation Measures 67
Table 49- Segment Traffic Conditions Progression Each Horizon Year 68
Table 50- Intersection Traffic Conditions Progression Each Horizon Year 68
Table 51- Left and Right Turn Lane Progression Each Horizon Year 69

TRAFFIC IMPACT ANALYSIS Northern Lights

I. Executive Summary

A. Site Location and Study Area

Northern Lights is a proposed 17 -lot subdivision, that will house a main and accessory dwelling unit, that is located in Teton County northeast of the City of Tetonia positioned on two (2) parcels; the two (2) parcels make up a total of 80 acres. Figure 1 shows the location of the proposed development.

Figure 1-Location Map

1. Development Description and Phasing

The projected land use for the build-out year of the proposed development is comprised of 17 main dwelling units and 17 accessory dwelling units (34 units total).

This traffic impact study evaluates the existing transportation conditions, the buildout condition, and a horizon year 20 years beyond the buildout year. The following analyses were performed:
> 2022 existing background traffic
> 2027 buildout year background traffic
> 2027 buildout year background plus site traffic
> 2047 horizon year background traffic
> 2047 buildout year background plus site traffic

B. Conclusions and Recommendations

After evaluating the proposed development within the context of zoning; projected land use; existing transportation system; background traffic counts for the principal roadways within the study impact area; projected traffic for horizon years corresponding with project opening, project buildout, and a 20 -year horizon year; the findings of the Traffic Impact Study are summarized below. In order to simplify the forecasted traffic conditions as they have progressed through this study, the following three (3) tables were produced. The first table shows the forecasted progression of the roadway segments, the second table shows the intersections, and the third shows the left or right turn.

Table 1-Segment Traffic Conditions Progression Each Horizon Year

Segment 1: 3000W	Northeast V/C Ratio	LOS	Southwest V/C Ratio	LOS
2022 Existing Traffic	0.014	A	0.008	A
2027 Background plus Site Traffic	0.016	A	0.010	A
2047 Background plus Site Traffic	0.027	A	0.016	A

Segment 2: 2000w	Northbound V/C Ratio	LOS	Southbound V/C Ratio	LOS
2022 Existing Traffic	0.011	A	0.012	A
2027 Background plus Site Traffic	0.022	A	0.018	A
2047 Background plus Site Traffic	0.030	A	0.026	A

Table 2 - Intersection Traffic Conditions Progression Each Horizon Year

Int 1: Hwy 33/3000w	Northeast Max L0S	Southeast Max L0S	Northwest Max Los	Southwest Max Los
2022 Existing Traffic	n / a	A	A	B
2027 Background Traffic	n / a	A	A	B
2027 Background plus Site Traffic	n / a	A	A	B
2047 Background Traffic	n / a	A	A	C
2047 Background plus Site Traffic	n / a	A	A	D

Int 2: Hwy 33/2000w	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2022 Existing Traffic	A	A	B	C
2027 Background Traffic	A	A	C	C
2027 Background plus Site Traffic	A	A	C	C
2047 Background Traffic	A	A	E	F
2047 Background plus Site Traffic	A	A	E	F

Int 3: 7000N/1750w	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2022 Existing Traffic	A	n / a	A	A
2027 Background Traffic	A	n / a	A	A
2027 Background plus Site Traffic	A	n / a	A	A
2047 Background Traffic	A	n / a	A	A
2047 Background plus Site Traffic	A	n / a	A	A

Int 4: 7000N/Solstice East (New)	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2022 Existing Traffic	n/a	n/a	n/a	n/a
2027 Background Traffic	n/a	n/a	n/a	n/a
2027 Background plus Site Traffic	A	A	A	n/a
2047 Background Traffic	n/a	n/a	n/a	n/a
2047 Background plus Site Traffic	A	A	A	n/a

$\left.$| Int 5: 7000N/Solstice West |
| :--- | :---: | :---: | :---: | :---: |
| (New) | | Eastbound |
| :---: |
| Max LOS | | Westbound |
| :---: |
| Max LOS | | Northbound |
| :---: |
| Max LOS |\quad| Southbound |
| :---: |
| Max LOS | \right\rvert\,

Table 3-Left and Right Turn Lane Progression Each Horizon Year

Int 1: Hwy 33/3000w	Left Turn Lane		Right Turn Lane	
	Southeast	Northwest	Southeast	Northwest
2022 Existing Traffic	Warranted	n/a	n/a	Not Warranted
2027 Background Traffic	Warranted	n/a	n/a	Not Warranted
2027 Background plus Site Traffic	Warranted	n/a	n/a	Not Warranted
2047 Background Traffic	Warranted	n/a	n/a	Warranted
2047 Background plus Site Traffic	Warranted	n/a	n/a	Warranted

Int 2: Hwy 33/2000W	Left Turn Lane		Right Turn Lane	
	Eastbound	Westbound	Eastbound	Westbound
2022 Existing Traffic	Warranted	Warranted	Not Warranted	Not Warranted
2027 Background Traffic	Warranted	Warranted	Not Warranted	Not Warranted
2027 Background plus Site Traffic	Warranted	Warranted	Not Warranted	Not Warranted
2047 Background Traffic	Warranted	Warranted	Not Warranted	Warranted
2047 Background plus Site Traffic	Warranted	Warranted	Not Warranted	Warranted

C. Existing Traffic Conditions (2022)

The existing traffic conditions were analyzed with the existing intersection control and lane configurations, all the road segments and intersections are operating within minimum operational thresholds except:

* Int. 1 Hwy 33/3000W: Southeast bound, left turning traffic, exceeds the minimum levels
* Int. 2 Hwy 33/2000W: Eastbound, left turning traffic, exceeds the minimum levels
* Int. 2 Hwy 33/2000W: Westbound, left turning traffic, exceeds the minimum levels
(1) Mitigating Measures

It is recommended that a left turn lane be constructed on Hwy 33 for the southeast bound traffic at Int. 1 and that left turn lanes be constructed for both the eastbound and westbound traffic on Hwy 33 at Int. 2.

D. Projected Traffic

The build-out conditions are expected to generate approximately 325 trips for the MADT and 26 trips during PM peak hour by year 2027.

E. 2027 Buildout Year Traffic Conditions Results

All segment capacity and intersection delay times/LOS are projected to operate within the minimum allowable operational thresholds. It was determined that for the 2022 existing conditions, left turn lanes are warranted at Intersection 1 and Intersection 2. For the 2027 buildout conditions, no new left turn lanes are warranted with or without the proposed development.
(1) Mitigating Measures

For the 2027 buildout scenario no deficiencies were forecasted, therefore no mitigation measures are recommended.

F. 2047 Horizon Year Traffic Conditions Results

The forecasted 2047 traffic conditions were analyzed with the existing intersection control and lane configurations, all the road segments and intersections are within minimum operational thresholds except:

* Int 1 Hwy 33/3000W: Northwest bound, right turning traffic, exceeds the minimum levels
* Int. 2 Hwy 33/2000W: Northbound traffic left, thru, and right turning movement's LOS is E, without or with the development
* Int. 2 Hwy 33/2000W: Southbound traffic left, thru, and right turning movement's LOS is F, without or with the development
* Int 2 Hwy 33/2000W: Westbound, right turning traffic, exceeds the minimum levels
(1) Mitigating Measures

Analysis shows that the addition of left turn lanes for both the eastbound and westbound traffic (warranted for the 2022 Existing Conditions), a westbound right turn lane (warranted for the 2047 Horizon Year), a northbound right and left turn lane (warranted for the 2047 Horizon Year), a southbound right and left turn lane (warranted for the 2047 Horizon Year) will create a road network that will operate within the minimum allowable thresholds.

G. Overall Study Summary

As can be seen from the tables shown previously, the development is forecasted to have minimal impact to the traffic network within the study area. All segments and intersections are forecasted to operate below the allowable operation thresholds throughout the study time period. As can be seen in the tables presented in this chapter, the LOS at each intersection for each turning movement without or with the development are the same except for the southwest traffic in the 2047 Horizon Year (reference the red highlighted cell in Table ES-2). Even though the southwest traffic without and with the development is difference, they are still forecasted to operate at an acceptable level through the 2047 Horizon Year.

This study also determined that all the intersections, each direction, within the study area on Hwy 33 warrant a left turn lane for the current/existing conditions. Additionally, right turn lanes are warranted within the next 25 years for the northwest bound traffic at Int. 1 Hwy 33/3000W and for the westbound traffic at Int. 2 Hwy 33/2000W without or with the development.

II. Introduction and Summary

Northern Lights is a proposed 17 -lot subdivision located in Teton County but within the impact area of the City of Tetonia. Each lot will consist of a main and an accessory dwelling unit; 34 total units. The Teton County Planning \& Zoning Commission approved the Concept Plan for the subdivision and the Tetonia Planning \& Zoning Commission, and the Tetonia City Council approved the Preliminary Plat submittal. The application for Preliminary Plat submittal is currently begin presented to the Teton County Planning \& Zoning Commission for consideration. The application for Preliminary Plat Submittal has several stipulations that apply to a proposed subdivision including the requirement for a Public Service / Fiscal Analysis to ascertain the financial impact the proposed development may have on public services.

Civilize, PLLC has been retained to prepare a Traffic Impact Study for the Northern Lights project in accordance with the requirements of Teton County.

A. Project Identification

The following table lists important project identification information and contact information for the project.
Table 4-Project Information Table

Project Name	Victor Hotel and Workforce Housing
Owner	Tony \& Anne Campbell
Owner Address	718 Meadow Hills Drive Richland, WA 99352
Owner Telephone Number	(509) 948-4441
Owner Email	anne@campbelltrainingsolutions.com
Engineer	Civilize, PLLC
Engineer Contact Person	Brent E. "Husk" Crowther, P.E.
Engineer Address	3853 W. Mountain View Dr. Rexburg, ID 83440
Engineer Project Number	$01-21-0011$
Engineer Telephone Number	$208-351-2824$
Engineer Email	bcrowther@civilize.design

B. Location

Northern Lights is a proposed 17 -lot subdivision, that will house a main and accessory dwelling unit, that is located in Teton County northeast of the City of Tetonia positioned on two (2) parcels; the two (2) parcels make up a total of 80 acres. Figure 1 shows the location of the proposed development.

Figure 2 - Location Map

C. Applicable Regulations

The Teton County Code, Title 9 Subdivision Regulations, Chapter 3 Procedure for Approval, Section 2 Subdivision or Planned Unit Development, Paragraph C Preliminary Plat Phase, Paragraph 3 Regulations That May Apply, Item d Traffic Impact Study states:

> Due to the impact that a subdivision or PUD may have on traffic levels, congestion levels, and levels of service on roads, the applicant for a proposed subdivision containing more than ten (10) lots or a proposed PUD containing more than ten (10) lots or dwelling units shall traffic impact study prepared by a professional engineer. A TIS may also be required if the Planning Administrator, the Commission, or the Board think that the condition of one or more of the roads that would provide access between the proposed development and the nearest State Highway is so poor that traffic from ten (10) or fewer lots or dwelling units could create public safety risks or interfere with the efficient flow of traffic. Each required traffic impact study shall meet the following standards: (amd. 11-14-08)

D. Purpose of Report and Study Objectives

The purpose of the Traffic Impact Study (TIS) is to evaluate the traffic impacts resulting from the proposed development and to make recommendations for mitigation to the impacts if such prove necessary. This study discusses:

- The proposed development
- The study approach
- The area conditions
- Existing 2022 traffic volumes and conditions
- Projected traffic from the development
- Buildout 2027 traffic volumes and conditions without and with the development
- 20-Year Horizon Year traffic volumes and conditions without and with the development
- Conclusions, recommendations, and possible mitigation measures

III. Proposed Development

A. Description of On-Site Development

1. Description

The development plans call for 17 single family residences and 17 accessory dwelling units. The Traffic Impact Study (TIS) will be based on the that type of development.

2. Location

As presented previously, the proposed development is located northeast of Tetonia and is comprised of two (2) parcels totaling 80 acres. The parcel numbers and legal descriptions are:

- RP06N45E280010, NE4 NE4 SEC 28 T6N R4 5E
- RP06N45E273000, NW4 NW4 SEC 27 T6N R4 5E

3. Zoning

Currently, Teton County lists the west parcel as FH-10 Foothills and the east parcel as RA-35 Rural Agriculture. The following map, from the Teton County GIS page, shows the zoning of the area

Figure 3-Zoning Map

4. Site Plan

The Concept Master Plan has been prepared and presented to Teton County who approved the plan at the concept plan hearing. That plan is presented in the following figure and a larger version presented in Exhibit A - Proposed Site Plan. Although the site configuration may change slightly in the future, the Site Master Plan represents the best information regarding anticipated future development for land use and will be the basis of traffic projections generated by the proposed development.

Figure 4 - Site Plan

5. Land Use and Intensity

The development as proposed consists of 17 single family residences lots. As stated earlier, the 17 lots will consist of a main and accessory dwelling unit for a total of 34 dwellings. While future development may occur in the area of the proposed project, that development is not currently defined and will not be considered in the traffic modeling, rather that responsibility will be relegated to future developers.

6. Phasing and Timing

a. Existing Conditions

The traffic counts were obtained in November of 2022. The existing condition year will be considered 2022.

b. Buildout Conditions

It is estimated that buildout will occur in five (5) years. The buildout conditions will be considered for 2027
c. 20-Year Horizon Year

The 20-year longer term traffic conditions occur 20 years after buildout. Therefore, the 20-year horizon year will be projected to year 2047. As mentioned earlier, this TIS will not consider additional traffic that may be generated from unknown developments within the study area.

IV. Study Approach

A. Full TIS or Minor TIS

The scope of this TIS is based on ITD's Requirements for Transportation Impact Studies (Supplement to Board Policy B-12-06) as well as the guidance document titled Transportation Impact Analyses for Site Development.published by the Institute of Transportation Engineers (ITE). These requirements outline a full or minor TIS as:

- A full TIS shall be required for developments that will generate more than 100 vph or 1000 vpd .
- A minor TIS is required for developments that will generate up to 99 vph or 999 vpd .

This development is forecasted to generate less than 99 vph , and less than 999 vpd , thus a minor TIS will be performed. Since this is determined to be a minor TIS, only the pm peak hour will be analyzed as recommended by the Requirements for Transportation Impact Studies by ITD

B. Study Period

The following study periods were identified for analysis:

1. 2022 (Existing)
2. 2027 (Project Buildout)
3. 2047 (Horizon year)

The following time intervals were identified for analysis:

1. Weekend PM peak hour

C. Segments and Intersections to be Studied

For roadway segments or links, the requirements state that if a segment experiences a directional increase of 250 vpd , and/or 25 vph vehicles in the peak hour should be included in the study. In total, it is forecasted that the development at buildout will generate 325 vpd and 26 vph .

It is assumed that 10% of the generated traffic will use 7000 N to access Hwy 33 to the west. The traffic will travel from the development on 7000 N to and from 3000 W then to and from Hwy 33 on 3000 W . The segment, on this path to Hwy 33, that currently has the highest hourly volume is 3000W. Even though this segment does not experience the minimum requirement for analysis, this 550 ft segment of 3000W north of Hwy 33 will be analyzed in this study.

It is assumed that 90% of the generated traffic will use 7000 N to access Hwy 33 to the south. The traffic will travel from the development on 7000 N to and from 1750 W , then to and from 1750 W to and from 6000 N , then to and from 6000 N to 2000 W , then to and from Hwy 33 on 2000 W . The segment, on this path to Hwy 33, that currently has the highest hourly volume is 2000 W . Even though this segment does not experience the minimum requirement for analysis, this 1200 ft segment of 3000 W north of Hwy 33 will be analyzed in this study.

The traffic from the development will use two (2) intersections on Hwy 33. This study will analyze these two (2) intersections on Hwy 33 along with the intersection of $7000 \mathrm{~N} / 1750 \mathrm{~W}$ and the two (2) new intersections created by the development for a total of five (5) intersections.

D. Study Methodology, Limitations and Assumptions

1. Traffic Model

The data gathered will be entered into the Synchro Traffic Modeling Software Version 11. The traffic volumes (in vehicles per hour) during the pm peak hour will be entered into the traffic model. The following steps will be followed in this TIS:

1. PM peak traffic turning off and on 3000 W at the intersection of Hwy $33 / 3000 \mathrm{~N}$ will be visually counted
2. PM peak traffic turning off and on 2000 W at the intersection of Hwy $33 / 2000 \mathrm{~W}$ will be visually counted
3. PM peak traffic counts for all turning movements at the intersection of $7000 \mathrm{~N} / 1750 \mathrm{~W}$ will be visually counted
4. Hwy 33 data will be obtained from ITD
5. Since the data was visually collected out of peak season, the visual data will be seasonally adjusted to the peak month to match the data from ITD
6. The adjusted volumes will be entered into a model for the 2022 existing conditions to establish a baseline
7. The proposed development will be analyzed to determine the projected generated traffic
8. A growth factor will be multiplied to the 2022 existing volumes to determine the forecasted 2027 traffic volumes and conditions without the development
9. The projected generated traffic from the development will be added to the 2027 forecasted traffic volumes to determine the forecasted 2027 traffic volumes and conditions with the development
10. The growth factor will be multiplied to the 2022 existing volumes to determine the forecasted 2047 (20-years after anticipated buildout) traffic volumes and conditions without the development
11. The projected generated traffic from the development will be added to the 2047 forecasted traffic volumes to determine the forecasted 2047 traffic volumes and conditions with the development
12. If a poor Level of Service (LOS) is determined, mitigation measure will be discussed to improve the LOS

Along with entering in the traffic volumes into the model, a peak hour factor, as recommended by the Highway Capacity Manual HCM for rural roadways, of 0.88 and a 5% heavy vehicle factor will be used.

2. Anticipated Annual Growth

The growth will be based on the historical increase in traffic that the ITD has collected. This data show that in 2002 the ADT was 1951 vpd and the in 2022 the ADT was 3252 vpd. Using the population growth formula of $\mathrm{P}=\mathrm{P}^{*}\left(\exp \left(\mathrm{e}^{\mathrm{rt}}\right)\right)$, we get an annual average increase of 2.55%. This increase will be used throughout this study.

3. Level of Service (LOS)

The traffic modeling software is used to determine the LOS. The LOS helps to determine when improvements are needed. The following sections discuss the difference between the segment and intersection LOS.

a. Segment LOS

At the time of this study, the free flow speed (FFS) was not available for the specific road segment being analyzed to determine the LOS. Therefore, in order to determine the LOS for the road segment through this area, the volume to capacity ratio (v / c ratio) will be used. In order to determine the v / c ratio, we divide the volume of the roadway by the capacity. According to the Highway Capacity Manual, the capacity of a two-lane highway is 1,700 vehicles per hour for each direction of travel. By dividing the peak hour by the peak hour capacity, we get a v/c ratio. The following table shows the correlation between the v / c ratio and the LOS. For this study, the mountainous terrain with 0% no passing will be used.

Table 5 - LOS Criteria for General Two-Lane Highway Segments

Level of Service Criteria for General Two-Lane Highway Segments																							
$\begin{gathered} \text { \% Time } \\ \text { LOS } \begin{array}{c} \text { Delay } \end{array} \\ \hline \end{gathered}$		V/C Ratio ${ }^{\text {a }}$																					
		Level Terrain							Rolling Terrain							Mountainous Terrain							
		Avg. ${ }^{\text {. }}$ Speed	\% No-Passing Zone						Avg. ${ }^{\text {b }}$ Speed	\% No-Passing Zone						Avg. ${ }^{\text {b }}$ Speed	\% No-Passing Zone						
		0	20	40	60	80	100	0		20	40	60	80	100	0		20	40	60	80	100		
A	≤ 30		258	0.15	0.12	0.09	0.07	0.05	0.04	257	0.15	0.10	0.07	0.05	0.04	0.03	256	0.14	0.09	0.07	0.04	0.02	0.01
B	≤ 45	≥ 55	0.27	0.24	0.21	0.19	0.17	0.16	≥ 54	0.26	0.23	0.19	0.17	0.15	0.13	≥ 54	0.25	0.20	0.16	0.13	0.12	0.10	
C	≤ 60	≥ 52	0.43	0.39	0.36	0.34	0.33	0.32	≥ 51	0.42	0.39	0.35	0.32	0.30	0.28	≥ 49	0.39	0.33	0.28	0.23	0.20	0.16	
D	≤ 75	≥ 50	0.64	0.62	0.60	0.59	0.58	0.57	≥ 49	0.62	0.57	0.52	0.48	0.46	0.43	≥ 45	0.58	0.50	0.45	0.40	0.37	0.33	
E	> 75	≥ 45	1.00	1.00	1.00	1.00	1.00	1.00	≥ 40	0.97	0.94	0.92	0.91	0.90	0.90	≥ 35	0.91	0.87	0.84	0.82	0.80	0.78	
F	100	< 45	-	--	--	--	--	--	< 40	--	--	-	--	--	--	<35	--	--	--	--	-	-	

The following figure helps define each of the six (6) segment LOS levels. When a LOS decreases to a LOS of E , mitigation measures/improvements are recommended.

Figure 5 - Segment LOS

b. Intersection LOS

The LOS for an intersection is determined by the control delay per vehicle. The LOS is broken down into six (6) categories A through F; A being the best, F being the worst and E being the start of failure. In other words, when a LOS decreases from a D to an E , improvements are recommended. The following bulleted items and table breakdown the six (6) categories and show the correlation between the delay time and a LOS.

- LOS A: The intersection has no congestion, has less than a 10 second control delay per vehicle, and is operating below 55% capacity.
- LOS B: The intersection has very little congestion, has a control delay per vehicle between 10 and 15 seconds, and is operating between 55% and 64% capacity.
- LOS C: The intersection has no major congestion, has a control delay per vehicle between 15 and 25 seconds, and is operating between 64% and 73% capacity.
- LOS D: The intersection normally has no congestion, has a control delay per vehicle between 25 and 35 seconds, and is operating between 73% and 82% capacity.
- LOS E: The intersection is right on the verge of congested conditions, has a control delay per vehicle between 35 and 50 seconds, and is operating between 82% and 91% capacity.
- LOS F: The intersection is over capacity and experiences congestion, has a control delay per vehicle between 50 seconds or more, and is operating between 91% and 100% capacity.

Table 6 - Control Delay per Vehicle to LOS Correlation Table

Control Delay Per Vehicle (s)	LOS
≤ 10	A
10 to 15	B
15 to 25	C
25 to 35	D
35 to 50	E
>50	F

4. Left Turn and Right Turn Lane Warrant Analysis

The right-hand turn and left-hand turn lane warrants are analyzed following the guidance found in ITD's Traffic Manual: Idaho's Supplementary Guide to the MUTCD, which references NCHRP Report 745 -Left-Turn Accommodations at Unsignalized Intersections. In addition, the NCHRP 457 - Evaluating Intersection Improvements: An Engineering Study Guide was utilized for right-turn movements. The following figures show the left-turn and right-turn warrant charts for intersections on a two-lane rural highway.

Figure 6 - Left-Turn Warrant Chart

Figure 7 - Right-Turn Warrant Chart
Civilize, PLLC

V. Area Conditions

A. Study Area

1. Area of Influence and Significant Traffic Impact

The area of influence for this analysis includes the following roadway segments and intersections.

1. Segment $\# 1-3000 \mathrm{~W}$
2. Segment $\# 2-2000 \mathrm{~W}$
3. Intersection \#1 - Hwy $33 / 3000 \mathrm{~W}$
4. Intersection \#2 - Hwy $33 / 2000 \mathrm{~W}$
5. Intersection $\# 3-7000 \mathrm{~N} / 1750 \mathrm{~W}$
6. Intersection $\# 4-7000 \mathrm{~N} /$ Solstice Circle East (new intersection)
7. Intersection $\# 5-7000 \mathrm{~N} /$ Solstice Circle West (new intersection)

The area of influence is presented in the following figure.

Figure 8 -Area of Influence and Significant Traffic Impact

B. Study Area Land Use

1. Existing Land Uses

The current land use is agricultural interspersed with scattered residential use. The City of Tetonia is a small rural community located just southwest of the development. The use can be observed in the various figures presented and in viewing the parcels using various commercial mapping platforms available to the public such as Google Earth, Bing Maps, and the Teton County GIS parcel viewer.

2. Existing Zoning

Currently, Teton County lists the west parcel as FH-10 Foothills and the east parcel as RA-35 Rural Agriculture. The use of the land reflects that zone.

3. Anticipated Future Development

The only known future development in the area is the proposed project which consists of 17 single family residences lots. As stated earlier, the County requires the study to assume that all 17 lots will consist of a main home and an accessory dwelling unit for a total of 34 dwellings.

C. Site Accessibility

Access to the site will be by $2000 \mathrm{~W}, 6000 \mathrm{~N}$, and 1750 W to and from Hwy 33 and $7000 \mathrm{~N}, 3000 \mathrm{~W}$ to and from Hwy 33. The main access to the development will be off of 7000 N .

a. Road Network Functional Classification.

For access guidelines, the Road Classification Map published by Teton County shows that 2000W, 6000 N, $1750 \mathrm{~W}, 7000$ N, and 3000 W are considered minor neighborhood while Highway 33 is considered a minor arterial; see the following figure for the Teton County Road Classification Map.

Figure 9 - Teton County Road Classification Map

1. Access Management

Access management within a city is intended to facilitate safe and convenient access and circulation for vehicular traffic, pedestrians, and bicycles within a jurisdiction. Access management for the state highway system intended to provide safe transit for reginal and interstate traffic. As such, the objectives of access management within a city can sometimes be different than those for a state highway system.

a. Teton County

Access management for Teton County is governed by the publication Highway \& Street Guidelines for Design and Construction in Teton County, Idaho as amended April 11, 2013. A review of that publication does not reveal any specific requirements for access management.

2. Area Transportation Elements and Roadway System

a. Existing Roadway Network

The existing roadway network consists of rural two-lane roadways.
b. Transit Service

TRPTA operates public transit services in the area but not on roadways within the study area of this Traffic Impact Study.
c. Bicycle and Pedestrian Facilities

There are no bicycle or pedestrian facilities on the roads in the vicinity of the development.
d. Future

Other than the roads for the proposed development, there are no known future road improvements in the vicinity.

3. Accident History

a. ITD Crash Data

Figure 10-LHTAC Crash Data
According to the Idaho Local Road Crash Data that was obtained from the Local Highway Technical Assistance Council (LHTAC) there has been six (6) crashes within the influence area of this study; four (4) at the intersection of Hwy $33 / 3000$ N and two (2) at the intersection of Hwy $33 / 2000 \mathrm{~W}$ as depicted in the above Figure. Of these six (6) accidents, no fatalilites have been recorded and are below the base rate for a similar intersection types in Idaho.

VI. Existing 2022 Traffic Volumes and Conditions

A. Traffic Forecasting

There are diverse ways to forecast future traffic flow and patterns. A common forecasting method is to take the historic population and forecast the traffic from those values. However, in this situation, recreation and tourism is a major factor, therefore using traffic data trends from ITD traffic counts will provide more satisfactory results from which to draw conclusions and make recommendations for mitigation. This study will use traffic data obtained from the ITD to determine traffic conditions for the 2022 (existing), 2027 (Project buildout), and the 2047 (20-year after buildout) horizon years.

B. Roadway Network

Within the area of influence there will be two (2) roadway segments, three (3) existing intersections, and two (2) future intersection studied. The segments and the intersections that will analyzed are:

1. Segment $\# 1-3000 \mathrm{~W}$
2. Segment \#2-2000W
3. Intersection \#1 - Hwy $33 / 3000 \mathrm{~W}$
4. Intersection \#2 - Hwy $33 / 2000 \mathrm{~W}$
5. Intersection $\# 3-7000 \mathrm{~N} / 1750 \mathrm{~W}$
6. Intersection \#4-7000N/Solstice Circle East (new intersection)
7. Intersection $\# 5-7000 \mathrm{~N} /$ Solstice Circle West (new intersection)

C. Seasonal Adjustment

As a recreational destination, the traffic volumes fluctuate throughout the year with the summer months exhibiting the highest ADT. It has been determined that the peak month in 2022 was July with an ADT of $4,219 \mathrm{vpd}$. The visual counts were performed in November of 2022. The ITD data for November of 2022 shows that there was an ADT of 2,869 vpd. This indicated that the seasonal difference between when the visual counts were performed (November) and the peak month (July) is a difference of 47.1%. Throughout this study, all visual counts in November will be increased by 47.1% to help represent the traffic in July.

D. Existing 2022 Segment PM Peak Traffic Volumes

This section discusses the ADT, the peak hour flows, and the trip distribution for the existing traffic. As stated previously, the segments of 3000 W and 2000 W will be analyzed. Traffic counts in the study area were visually collected on November 4, 2022 during the pm peak hour.

1. Seg. 1-3000W Existing 2022 PM Peak Hr Flow

The results of this visual count show that there were 12 vph headed northeast and seven (7) vph headed southwest during pm peak hour. Increasing counts these by the 47.1% seasonal adjustment it is calculated that there are 23 vph headed northeast and 13 vph headed southwest.

2. Seg. 2-2000W Existing 2022 PM Peak Hr Flow

The results of this visual count show that there were 10 vph headed northbound and 20 vph headed southbound during pm peak hour. Increasing these counts by the 47.1% seasonal adjustment it is calculated that there are 18 vph headed northbound and 20 vph headed southbound.

E. Existing 2022 PM Peak Intersection Traffic Volumes

1. Highway 33 Peak Hr Flow

The traffic volumes at the three (3) existing intersections were visually counted on November 4, 2022. However, for the two (2) intersections that include Hwy 33, only the turning movements off of Hwy 33 were counted. This is due to the fact that the ITD has counters on Hwy 33 that collect a number of different data items that provides a larger window of data. The data obtained from the ITD for Hwy 33 will be adjusted to the study area and added to the seasonally adjusted visual counts. The ITD website for Road Data features an interactive map that allows a query by road milepost for Average Annual Daily Traffic (AADT), which is the total volume of traffic on a road for a year divided by the number of days (365) in a year. However, these values are annual averages rather than peak days that reflect summertime travel. ITD also maintains Automatic Traffic Recorders (ATRs) throughout the state including District 6, two (2) of these ATRs are located on Hwy 33; ATR 59 east of Newdale and ATR 239 south of Driggs. The ATR most relevant to this project is ATR \#59 near Newdale which records the traffic on Hwy 33. The monthly AADT for ATR \#59 in 2022 ranged from a low in January of 2,357 vpd to a high in July of 4,219 vpd. This study will focus on the July MADT or peak season and not the ADT. The following figure shows the locations of the ATRs in the area.

Figure 11: Hwy 33 ATR Locations

Furthermore, an adjustment needs to be made due to the fact that ATR 59 is 24 miles away from the study area. The ITD does have a database that has the ADT for each milepost along Hwy 33. In order to make these adjustments, the ADT difference between ATR 59 (Milepost 113) and the study area (Milepost 132 and Milepost 134) will be used. The following figure shows the mileposts along Hwy 33.

Figure 12: Hwy 33 Mileposts and ADT
The ITD website shows that the ADT at Milepost 113 to Milepost 130 is $3,500 \mathrm{vpd}$, at Milepost 132 is $5,400 \mathrm{vpd}$, and at Milepost 134 is $6,400 \mathrm{vpd}$. It is calculated that there is an increase in traffic of 54.3% between Milepost 113 and Milepost 132 and an increase of 18.5% between mileposts 132 and 134 .

Data retrieved at ATR 59 shows that the in July, the highest traffic day is Friday. Furthermore, the highest pm peak hour traffic occurs between 5:00 pm and 6:00 pm on Fridays with a monthly average pm peak of 407 vph with 192 vph traveling east and 214 vph traveling west.

The last step is to take the pm peak hour traffic and adjust them proportionately to the by the calculated increase; an increase of 54.3% from Milepost 113 to Milepost 132 and an increase of 18.5% from Milepost 132 to Milepost 134. The following table shows the calculated PM peak hour volumes that will be used in this study. These volumes will be used in analyzing the intersections.

Table 7 Existing Segment ADT, Peak Hour, and Trip Distribution Volumes

Milepost	Year	ADT	July PM Peak	PM Peak Eastbound	PM Peak Westbound
113	2022	3500	407	192	214
132	2022	5400	626	296	330
134	2022	6400	742	351	391

2. Int. 1 - Hwy 33/3000W Peak Hr Volume

The turning movements that were visually counted on November 4, 2022 were seasonally adjusted to July and were added to the collected July traffic counts provided by the ITD. The results are shown in the following figure.

Figure 13: Existing 2022 Conditions Hwy 33/3000W PM Peak Hr Volume

3. Int. 2 - Hwy 33/2000W Peak Hr Volume

The turning movements that were visually counted on November 4, 2022 were seasonally adjusted to July and were added to the collected July traffic counts provided by the ITD. The results are shown in the following figure.

Figure 14: Existing 2022 Conditions Hwy 33/2000W PM Peak Hr Volume

4. Int. $3-7000 \mathrm{~N} / 1750 \mathrm{~W}$ Peak Hr Volume

The traffic volumes that were collected on November 4, 2022 were seasonally adjusted to help emulate the peak month of July. The results are shown in the following figure.

Figure 15: Existing 2022 Conditions 7000N/1750W PM Peak Hr Volume

5. Int. $4-7000 \mathrm{~N} /$ Solstice Circle East Peak Hr Volume (New Intersection)

Due to the fact that this intersection does not exist for the existing conditions, no traffic counts were counted. This intersection will be analyzed in the buildout and 20-year after buildout horizon years.

6. Int. 5-7000N/Solstice Circle West Peak Hr Volume (New Intersection)

Due to the fact that this intersection does not exist for the existing conditions, no traffic counts were counted. This intersection will be analyzed in the buildout and 20-year after buildout horizon years.

F. Existing 2022 Segment PM Peak Traffic Conditions

At the time of this study, the free flow speed (FFS) was not available for the specific road segment being analyzed. Therefore, in order to determine the LOS for the road segment through this area, the volume to capacity ratio (v / c ratio) will be used. In order to determine the v / c ratio, we divide the volume of the roadway by the capacity. According to the Highway Capacity Manual, the capacity of a two-lane highway is 1,700 vehicles per hour for each direction of travel. By dividing the peak hour by the peak hour capacity, we get a v / c ratio. The following table shows the correlation between the v / c ratio and the LOS.

Table 8 Level of Service Criteria for General Two-Lane Highway Segments

Level of Service Criteria for General Two-Lane Highway Segments																							
$\begin{array}{r} \text { \% Time } \\ \text { LOS } \\ \hline \end{array}$		V/C Ratio ${ }^{\text {a }}$																					
		Level Terrain							Rolling Terrain							Mountainous Terrain							
		$\begin{aligned} & \text { Avg. }{ }^{\circ} \\ & \text { Speed } \end{aligned}$	\% No-Passing Zone						$\begin{aligned} & \text { Avg. }{ }^{\circ} \\ & \text { Speed } \end{aligned}$	\% No-Passing Zone						Avg. ${ }^{\text {. }}$ Speed	\% No-Passing Zone						
		0	20	40	60	80	100	0		20	40	60	80	100	0		20	40	60	80	100		
A	≤ 30		≥ 58	0.15	0.12	0.09	0.07	0.05	0.04	≥ 57	0.15	0.10	0.07	0.05	0.04	0.03	≥ 56	0.14	0.09	0.07	0.04	0.02	0.01
B	≤ 45	z 55	0.27	0.24	0.21	0.19	0.17	0.16	≥ 54	0.26	0.23	0.19	0.17	0.15	0.13	≥ 54	0.25	0.20	0.16	0.13	0.12	0.10	
C	≤ 60	z 52	0.43	0.39	0.36	0.34	0.33	0.32	≥ 51	0.42	0.39	0.35	0.32	0.30	0.28	≥ 49	0.39	0.33	0.28	0.23	0.20	0.16	
D	≤ 75	≥ 50	0.64	0.62	0.60	0.59	0.58	0.57	≥ 49	0.62	0.57	0.52	0.48	0.46	0.43	245	0.58	0.50	0.45	0.40	0.37	0.33	
E	> 75	≥ 45	1.00	1.00	1.00	1.00	1.00	1.00	≥ 40	0.97	0.94	0.92	0.91	0.90	0.90	≥ 35	0.91	0.87	0.84	0.82	0.80	0.78	
F	100	< 45	-	--	--	--	--	--	< 40	--	--	-	--	--	-	<35	-	--	--	--	-	--	

1. Seg. 1 - 3000W Existing 2022 PM Peak Hr Traffic Conditions

The visual counts that were seasonally adjusted show that there were 23 vph heading northeast and 13 vph heading southwest during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.014 for northeast bound traffic and 0.008 for southwest bound traffic. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.

a. Seg. 1: 3000W Existing 2022 Mitigation Measures

Since the worst LOS is an A, no improvements are warranted for the existing segment conditions.

2. Seg. 2: 2000W Existing 2022 PM Peak Hr Traffic Conditions

The visual counts that were seasonally adjusted show that there are 18 vph heading northbound and 20 vph heading southbound during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.011 for northbound and 0.012 for southbound. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.

a. Seg. 2: 2000W Existing 2022 Mitigation Measures

Since the worst LOS is an A, no improvements are warranted for the existing segment conditions.

G. Existing 2022 Intersection PM Peak Hr Traffic Conditions

In order to determine how well an intersection is functioning, the intersection's Measures of Effectiveness (MOEs) for the peak hour is analyzed. The MOEs include:

1. Level of Service (LOS)
2. Control Delay
3. Volume/Capacity Ratio (V/C Ratio)
4. $95^{\text {th }}$ Percentile Queue

Using the traffic volumes and turning movements shown previously, the 2022 existing MOEs for the intersections can be determined.

1. Int. 1 - Hwy 33/3000W Existing 2022 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 1 are shown in the following figure.

Table 9 -Int. 1 - Existing (2022) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS					${ }_{\text {SBL }}$	SBT
© Lanes and Sharing (\#RL)	T		t			¢
- Traffic Volume (vph)	9	4	330	16	7	296
- Future Volume (vph)	9	4	330	16	7	296
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (tt)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	6.4	6.2	-	-	4.1	-
- Follow Up Time, tF (s)	3.5	3.3	-	-	2.2	
- Volume to Capacity Ratio	0.03	0.03	0.22	0.22	0.01	0.01
- Control Delay [s]	13.2	13.2	0.0	0.0	0.1	0.3
- Level of Service	B	B	A	A	A	A
- Queue Length 95th (ft)	2	2	0	0	1	1
- Approach Delay [s]	13.2		0.0	=	-	0.3

2. Int. 2 - Hwy 33/2000W Existing 2022 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 2 are shown in the following figure.

Table 10 -Int. 2 - Existing (2022) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS					WBT WB							SBR
∞ Lanes and Sharing (\#RL)		*			\&			¢			*	
- Traffic Volume [vph]	4	351	6	1	391	13	4	1	6	12	1	7
- Future Volume (vph]	4	351	6	1	391	13	4	1	6	12	1	7
- Sign Control	-	Free	-	-	Free	-	-	Stop	-	-	Stop	-
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
- Critical Gap, tC (s)	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
- Follow Up Time, FF (s)	2.2	-	-	2.2	-	-	3.5	4.0	3.3	3.5	4.0	3.3
- Volume to Capacity Ratio	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.03	0.06	0.06	0.06
- Control Delay [s]	0.0	0.1	0.1	0.0	0.0	0.0	13.7	13.7	13.7	15.8	15.8	15.8
- Level of Service	A	A	A	A	A	A	B	B	B	C	C	C
- Queue Length 95th (t)	0	0	0	0	0	0	2	2	2	5	5	5
- Approach Delay [s]	-	0.1	-	-	0.0	-	-	13.7	-	-	15.8	-

3. Int. 3 - 7000N/1750W Existing 2022 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 3 are shown in the following figure.

Table 11 -Int. 3 - Existing (2022) Peak Hr MOEs

HCM 2000 SIGNING SETTINGS		EBR				$\stackrel{\downarrow}{4 B R}$
∞ Lanes and Sharing (\#RL)	W/			*	F	
- Traffic Volume (vph)	1	1	1	2	3	1
- Future Volume (vph)	1	1	1	2	3	1
\bigcirc - Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	4.1	-	-	-
O Follow Up Time, tF [s]	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.00	0.00	0.00	0.00	0.00	0.00
- Control Delay [s]	8.5	8.5	0.0	2.4	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
\bigcirc Approach Delay (s)	8.5	-	-	2.4	0.0	-

4. Int. 4 - 7000N/Solstice Circle East Existing 2022 PM Peak Hr Traffic Conditions (New Intersection)

Due to the fact that this intersection does not exist for the existing conditions, no delays are recorded. This intersection will be analyzed in the buildout and 20-year after buildout horizon years.

5. Int. 5 - 7000N/Solstice Circle West Existing 2022 PM Peak Hr Traffic Conditions (New Intersection)

Due to the fact that this intersection does not exist for the existing conditions, no delays are recorded. This intersection will be analyzed in the buildout and 20-year after buildout horizon years.

H. Turn Lane Warrants Based on Safety Analysis of Intersections

1. Existing Conditions Left Turn Lane Analysis

Intersection \#1 and \#2 were evaluated for safety using ITD guidelines which recommend using the National Cooperative Highway Research Report 745 -Left-Turn Accommodations at Unsignalized Intersections (NCHRP 745) to evaluate left-hand turns and National Cooperative Highway Research Report 457: Evaluating Intersection Improvements: An Engineering Study Guide (NCHRP 457) to evaluate right-turn movements to determine if turning movements are consistent with national standards for safety based on traffic volumes. These guidelines show that if a three-leg intersection has traffic higher than 200 vph per lane on the major roadway and more than 150 vph per lane on a four-leg intersection, a left turn is warranted (see left-turn lane warrant chart in Chapter 4). Based on the ITD guidelines, a left turn lane is warranted for the southwest bound traffic at Intersection 1 and are warranted for both eastbound and westbound traffic at Intersection 2 (see Appendix F for the left-turn worksheet).

2. Existing Conditions Right Turn Lane Analysis

The Right-hand turn warrant analysis follows the guidance found in ITD's Traffic Manual: Idaho's Supplementary Guide to the MUTCD (reference the right-turn lane warrant chart in Chapter 4). Based on these guidelines, no right turning lanes are warranted for existing conditions (see Appendix G for the right-turn worksheet).

I. Analysis of Existing 2022 PM Peak Hr Traffic Conditions Summary

This chapter has identified the following:

1. Segments

b. Seg. 1: 3000W

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.
c. Seg. 2: 2000W

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.

d. Segment Summary

The following table is a summary of each segment's v / c ratio and LOS for each direction.

$$
\text { Table } 12 \text {-Existing } 2022 \text { Segments Traffic Condition Summary }
$$

3000W	2022					
Direction	v/c	LOS				
Northeast	0.014	A				
Southwest	0.008	A		Direction	v/c	LOS
:---:	:---:	:---:				
Northbound	0.011	A				
Southbound	0.012	A				

2. Intersections

a. Int. 1: Hwy 33/3000W

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of B during the PM peak hour of the day.
b. Int. 2: Hwy 33/2000W

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of C during the PM peak hour of the day.
c. Int. 3: 7000N/1750W

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.

d. Int. 4-7000N/Solstice Circle East (New Intersection)

Due to the fact that this intersection does not exist for the existing conditions, no delays are recorded. This intersection will be analyzed in the buildout and 20-year after buildout horizon years.

e. Int. 5-7000N/Solstice Circle West (New Intersection)

Due to the fact that this intersection does not exist for the existing conditions, no delays are recorded. This intersection will be analyzed in the buildout and 20-year after buildout horizon years.

f. Intersection Summary

The following table is a summary of each intersection's LOS and delay time for each turning movement.

Table 13 -Existing 2022 Intersections Traffic Condition Summary

Int 1 - Hwy 33/3000W - Build LOS and Delay Times												
	Northeastbound			Southeastbound			Northwestbound			Southwestbound		
	Left	Thru	Right									
2022 Traffic	n/a	n/a	n/a	7	296	n/a	n/a	330	16	9	n/a	4
LOS	n/a	n/a	n/a	A	A	n/a	n/a	A	A	B	n/a	B
Delay	n/a	n/a	n/a	0.1	0.3	n/a	n/a	0	0	13.2	n/a	13.2

Int 2 - Hwy 33/2000W - Build LOS and Delay Times												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2022 Traffic	4	351	6	1	391	13	4	1	6	12	1	7
LOS	A	A	A	A	A	A	B	B	B	C	C	C
Delay	0	0.2	0.2	0	0.1	0.1	13.7	13.7	13.7	15.8	15.8	15.8

Int 3-7000N/1750W - Build LOS and Delay Times												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2022 Traffic	1	n/a	1	n/a	n/a	n/a	1	3	n/a	n/a	4	1
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	8.5	n/a	8.5	n/a	n/a	n/a	0	2.4	n/a	n/a	0	0

3. Turn Lane Analysis

a. Left Turn Lane Analysis

Left turns lanes are warranted for the southwest bound traffic at Intersection 1 and are warranted for both eastbound and westbound traffic at Intersection 2.

b. Right Turn Lane Analysis

Right turns lanes are not warranted for either intersection on Hwy 33 for the existing conditions.

4. Overall Summary for 2022

In summary, the following is determined to be operating at an unacceptable level for the existing conditions:

1. Int. 1 Hwy 33/3000W: Southeast bound, left turning traffic, exceeds the minimum levels
2. Int. 2 Hwy 33/2000W: Eastbound, left turning traffic, exceeds the minimum levels
3. Int. 2 Hwy 33/2000W: Westbound, left turning traffic, exceeds the minimum levels

5. Mitigation Measures for the 2022 Existing Conditions

It is recommended that a left turn lane be constructed on Hwy 33 for the southeast bound traffic at Int. 1 and that left turn lanes be constructed for both the eastbound and westbound traffic on Hwy 33 at Int. 2.

VII. Projected Traffic

A. Site Traffic

It is anticipated that buildout of the development will be complete by 2027.

1. Trip Generation

In order to determine the trips generated by the proposed development, the ITE Trip Generation $10^{\text {th }}$ Edition Manual was used. This study will use traffic data obtained from the ITD to determine traffic conditions for the 2022 (existing), 2027 (Project buildout), and the 2047 (Future) horizon years.

a. Buildout (2027)

The following two (2) tables show the land use and trip generation for the ADT and the peak hour.
Table 14- Land Use and Trip Generation (ADT) for Buildout (2027)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips	Internal Capture Trips		$\begin{gathered} \text { Pass-by } \\ \text { Trips } \end{gathered}$	Primary Trips Total
Weekday Trips									
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	9.57	163	0\%	0	- -	163
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	9.57	163	0\%	0	- -	163
Total					325		0	0	325

Table 15- Land Use and Trip Generation (Peak Hour) for Buildout (2027)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips	Internal Capture Trips		$\begin{array}{\|c} \text { Pass-by } \\ \text { Trips } \end{array}$		Primary Trips Total
Weekday Peak Hour										
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13
Total					26		0		0	26

2. Trip Distribution

Trip distribution is a percentage indicating what percentage of traffic is entering or exiting the study area. The ITE Trip Generation Handbook outlines the trip distribution for each land use. The following two (2) tables show the land use, trip generation, and trip distribution for the ADT and the peak hour.
Table 16- Trip Distribution (ADT) for Buildout (2027)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips	$\begin{array}{\|c\|} \hline \text { Internal } \\ \text { Capture } \\ \text { Trips } \\ \hline \end{array}$		$\begin{gathered} \text { Pass-by } \\ \text { Trips } \end{gathered}$		Primary Trips Total	Primary Trips Entering		$\begin{array}{\|c\|} \hline \text { Primary } \\ \text { Trips } \\ \text { Exiting } \\ \hline \end{array}$	
Weekday Trips														
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	9.57	163	0\%	0	-	-	163	50\%	81	50\%	81
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	9.57	163	0\%	0	-	-	163	50\%	81	50\%	81
Total					325		0		0	325		163		163

Civilize, PLLC
$33 \mid \mathrm{P}$ a g e
https://civilize-my.sharepoint.com/personal/bcrowther_civilize_design/Documents/Civilize/Proj/Campbell Anne/Campbell Ranch/Campbell Design/400 Prelim/1000 Civil/TIS/TIS_Northern Lights 2023-03-06 v1-2.docx

Table 17- Trip Distribution (Peak Hour) for Buildout (2027)

Land Use Category	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size	Units	Trip Generation per unit	Total Trips					Primary Trips Total	$\begin{array}{\|r} \hline \text { Prin } \\ \text { Tr } \\ \text { Ent } \\ \hline \end{array}$		$\begin{gathered} \text { Prim } \\ \text { Tri] } \\ \text { Exiti } \end{gathered}$	
Weekday Peak Hour														
Single-Family Detached Housing (Main)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13	64\%	8	36\%	5
Single-Family Detached Housing (Accessory)	210	17	Dwelling Untis	0.76	13	0\%	0	-	-	13	64\%	8	36\%	5
Total					26		0		0	26		17		9

3. Modal Split

Modal split is the determination of different travel modes (automobile, heavy vehicles, walk, etc.) from an origin to a given destination. Analyzing the pedestrian traffic is outside the scope of this study and it is assumed that no heavy vehicles will be generated from the development. A standard 5% heavy vehicle percentage will be applied to this study.

4. Trip Assignment

It is assumed that 10% of the generated traffic will travel to and from Intersection 1 and 90% will travel to and from Intersection 2 and 3.
a. Intersection 1: Hwy 33/3000W

When the 10% of the generated traffic reaches this intersection, it is assumed that the traffic will follow the existing traffic percentages presented in Chapter 6; 67\% using Hwy 33 to and from Tetonia and 33% using Hwy 33 to and from the Hwy $33 / H w y ~ 32$ intersection.
b. Intersection 2: Hwy 33/2000W

When traffic enters/exits the development, it is assumed that 90% will use 7000 N to and from Intersection 3. From there, it is assumed that 95% of the traffic will use 1750 W south of the intersection to and from 6000 N , to and from 2000 W , and then to and from Intersection 2 on Hwy 33; the remaining 5% will use 1750 W north of the intersection. When the traffic reaches Intersection 2, it is assumed that the traffic will follow the existing traffic percentages presented in Chapter 6; 57% turning left, 9% thru, and 35% turning right.
C. Intersection 3: 7000N/1750W

It is assumed that when the 90% of traffic generated from the development will travel to and from Intersection 1. When the traffic reaches this intersection, 95% will use the south leg, heading to and from Hwy 33, and the remaining 5% will use the north leg of the intersection

d. Intersection 4: 7000N/Solstice Circle East

From the site plan, it is assumed that nine (9) lots (lots 6-14) will access 7000N via the east access.

e. Intersection 5: 7000N/Solstice Circle West

From the site plan, it is assumed that eight (8) lots (lots $1-5$ and lots $15-17$) will access 7000 N via the west access.

B. Through Traffic (Non-Site Traffic)

1. Non-Site Traffic for anticipated Development in Study Area

a. Method of Projections

Pass-by trips are made as intermediate stops on the way from an origin to a destination without a route diversion. In other words, a pass-by trip is when the traffic on an adjacent roadway is attracted to a certain land use in a development as non-site traffic. The trip generally goes from origin to generator and then returns to the origin. The proposed development does not have any land uses that would be considered pass-by trips.

b. Trip Distribution

This section is not applicable due to the fact that single-family detached housing is not considered a nonsite traffic generator.

c. Modal Split

This section is not applicable due to the fact that single-family detached housing is not considered a nonsite traffic generator.

d. Trip Assignment

This section is not applicable due to the fact that single-family detached housing is not considered a nonsite traffic generator.

C. Total Traffic

The total trips generated by the development and the impact to each intersection for the 2027 Buildout are shown in the following figures.

Figure 16- Intersection 1 Hwy 33/3000W PM Peak Generated Traffic

Figure 17- Intersection 2 Hwy 33/2000W PM Peak Generated Traffic

Figure 18- Intersection 3 7000N/1750W PM Peak Generated Traffic

Figure 19- Intersection 4 Solstice Circle East PM Peak Generated Traffic

Figure 20- Intersection 4 Solstice Circle West PM Peak Generated Traffic

VIII. 2027 Horizon Year Traffic Analysis (Buildout)

A. On-Site Development

Buildout is assumed to be complete by the year 2027.

B. Traffic Forecasting

The traffic counts from Chapter 6 were increased by the annual growth rate percentages to establish the background traffic. This chapter will analyze two (2) scenarios for each segment and intersection; 2027 background traffic (without the development) and 2027 background plus site traffic (with the development).

C. Roadway Network

Within the area of influence there will be two (2) roadway segments, three (3) existing intersections, and two (2) future intersection studied. The segments and the intersections that will analyzed are:

1. Segment $\# 1-3000 \mathrm{~W}$
2. Segment \#2-2000W
3. Intersection \#1 - Hwy $33 / 3000 \mathrm{~W}$
4. Intersection \#2 - Hwy $33 / 2000 \mathrm{~W}$
5. Intersection $\# 3-7000 \mathrm{~N} / 1750 \mathrm{~W}$
6. Intersection $\# 4-7000 \mathrm{~N} /$ Solstice Circle East (new intersection)
7. Intersection $\# 5-7000 \mathrm{~N} /$ Solstice Circle West (new intersection)

D. 2027 PM Peak Segment Traffic Volumes

1. Seg. 1 - 3000W 2027 PM Peak Segment Traffic Volumes

a. 2027 Background 3000W PM Peak Hour Flow

The traffic volumes for the 2022 Existing Conditions were increased by the annual growth rate to forecast the 2027 Background Traffic. The results of this forecast 26 vph headed northeast and 15 vph headed southwest during pm peak hour.
b. 2027 Background plus Site Traffic 3000W PM Peak Hour Flow

The traffic generated by the development was added to the 2027 Background Traffic. The results of this forecast 28 vph headed northeast and 17 vph headed southwest during pm peak hour after buildout.
2. Seg. 2-2000W 2027 PM Peak Segment Traffic Volumes
a. 2027 Background 2000W PM Peak Hour Flow

The traffic volumes for the 2022 Existing Conditions were increased by the annual growth rate to forecast the 2027 Background Traffic. The results of this forecast 20 vph headed northbound and 23 vph headed southbound during pm peak hour.
b. 2027 Background plus Site Traffic 2000W PM Peak Hour Flow

The traffic generated by the development was added to the 2027 Background Traffic. The results of this forecast 37 vph headed northbound and 30 vph headed southbound during pm peak hour after buildout.

E. 2027 PM Peak Intersection Traffic Volumes

The traffic volumes for the 2022 Existing Conditions were increased by the annual growth rate to forecast the 2027 Background Traffic for each intersection. The following sections show the forecasted intersection traffic volumes without and with the proposed development.

1. Int. 1 - Hwy 33/3000W 2027 PM Peak Segment Traffic Volumes

Figure 21: Hwy 33/3000W 2027 Traffic Volumes without and with the Development
2. Int. 2 - Hwy 33/2000W 2027 PM Peak Segment Traffic Volumes

Figure 22: Hwy 33/2000W 2027 Traffic Volumes without and with the Development
3. Int. 3 - 7000N/1750W 2027 PM Peak Segment Traffic Volumes

Figure 23: 7000N/1750W 2027 Traffic Volumes without and with the Development

4. Int. 4 - 7000N/Solstice East 2027 PM Peak Segment Traffic Volumes

Since this intersection only exists with the development, only traffic volumes with the development are included.

Figure 24: 7000N/Solstice Circle East 2027 Traffic Volumes with the Development

5. Int. 5-7000N/Solstice West 2027 PM Peak Segment Traffic Volumes

Since this intersection only exists with the development, only traffic volumes with the development are included.

Figure 25: 7000N/Solstice Circle West 2027 Traffic Volumes with the Development

F. 2027 Segment PM Peak Hr Traffic Conditions

The traffic counts shown previously in the chapter were used to determine the forecasted conditions without and with the proposed development. The following sections identify the projected LOS for each segment for both scenarios.

1. Seg. 1 - 3000W 2027 PM Peak Hr Segment Traffic Conditions

a. Seg. 1-2027 Background 3000W PM Peak Hr Traffic Conditions

The visual counts that were seasonally adjusted show that there were 26 vph heading northeast and 15 vph heading southwest during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.015 for northeast bound traffic and 0.009 for southwest bound traffic. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
b. Seg. 1-2027 Background plus Site Traffic 3000W PM Peak Hr Traffic Conditions The traffic generated by the development was added to the 2027 Background Traffic. The results show that there are 28 vph heading northeast and 17 vph heading southwest during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.016 for northeast bound traffic and 0.010 for southwest bound traffic. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
c. Seg. 1-2027 Background plus Site Traffic 3000W PM Peak Hr Mitigation Measures Since the worst LOS is an A, no improvements are warranted for the existing segment conditions.

2. Seg. 2 - 2000W 2027 PM Peak Hr Segment Traffic Conditions

a. Seg. 2-2027 Background 2000W PM Peak Hr Traffic Conditions

The visual counts that were seasonally adjusted show that there are 20 vph heading northbound and 23 vph heading southbound during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.012 for northbound and 0.013 for southbound. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
b. Seg. 2 - 2027 Background plus Site Traffic 2000W PM Peak Hr Traffic Conditions The traffic generated by the development was added to the 2027 Background Traffic. The results show that there are 37 vph heading northbound and 30 vph heading southbound during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.022 for northbound and 0.018 for southbound. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
c. Seg. 2-2027 Background plus Site Traffic 2000W PM Peak Hr Mitigation Measures Since the worst LOS is an A, no improvements are warranted for the existing segment conditions.

G. 2027 Intersection PM Peak Hr Traffic Conditions

In order to determine how well an intersection is functioning, the intersection's Measures of Effectiveness (MOEs) for the peak hour is analyzed. The MOEs include:

1. Level of Service (LOS)
2. Control Delay
3. Volume/Capacity Ratio (V/C Ratio)
4. $95^{\text {th }}$ Percentile Queue

Using the traffic volumes and turning movements shown previously, the 2027 MOEs for the intersections, without and with the development, can be determined.

1. Int. 1 - Hwy 33/3000W 2027 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 1, without and with the development, are shown in the following figures.

Table 18-Int. 1 - 2027 Peak Hr MOEs without the Development

HCM 2000 SIGNING SETTINGS			$\dagger_{\text {NBT }}$	NBR	$\stackrel{\rightharpoonup}{\text { SBL }}$	SBT
∞ Lanes and Sharing (\#RL)	\%		\hat{F}			\uparrow
- Traffic Volume (vph)	10	5	375	18	8	336
- Future Volume (vph)	10	5	375	18	8	336
- Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	6.4	6.2	-	-	4.1	
- Follow Up Time, tF (s)	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.04	0.04	0.25	0.25	0.01	0.01
- Control Delay [s]	14.2	14.2	0.0	0.0	0.1	0.3
- Level of Service	B	B	A	A	A	A
- Queue Length 95th (it)	3	3	0	0	1	1
- Approach Delay (s)	14.2	-	0.0	-	-	0.3

Table 19 -Int. 1 - 2027 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS					${ }_{\text {SBL }}$	
∞ Lanes and Sharing (\#RL)	M		\dagger			(1)
- Traffic Volume (vph)	11	6	375	19	9	336
- Future Volume (vph)	11	6	375	19	9	336
- Sign Control	Stop	-	Free	-	-	Free
©o Median Width (tt)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s)	6.4	6.2	-	-	4.1	
\bigcirc Follow Up Time, FF (s)	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.05	0.05	0.25	0.25	0.01	0.01
- Control Delay [s]	14.0	14.0	0.0	0.0	0.1	0.3
- Level of Service	B	B	A	A	A	A
- Queue Length 95th (ft)	4	4	0	0	1	1
- Approach Delay [s]	14.0	-	0.0	-	-	0.3

2. Int. 2 - Hwy 33/2000W 2027 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 2, without and with the development, are shown in the following figures.

Table 20-Int. 2 - 2027 Peak Hr MOEs without the Development

HCM 2000 SIGNING SETTINGS		\rightarrow EBT	EBR		*		4		NBR		SBT	$\frac{\downarrow}{S B R}$
∞ Lanes and Sharing (\#RL)		*			\$			\&			\&	
- Traffic Volume (vph)	5	399	7	2	444	15	5	2	7	13	2	8
- Future Volume (vph)	5	399	7	2	444	15	5	2	7	13	2	8
- Sign Control	-	Free	-	-	Free	-	-	Stop	-	-	Stop	-
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
- Critical Gap, tC [s)	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
- Follow Up Time, tF (s)	2.2	-	-	2.2	-	-	3.5	4.0	3.3	3.5	4.0	3.3
- Volume to Capacity Ratio	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.04	0.04	0.08	0.08	0.08
- Control Delay [s]	0.1	0.1	0.1	0.0	0.1	0.1	15.6	15.6	15.6	18.1	18.1	18.1
- Level of Service	A	A	A	A	A	A	C	C	C	C	C	C
- Queue Length 95th (ft)	0	0	0	0	0	0	3	3	3	7	7	7
- Approach Delay [s]	-	0.1	-	-	0.1	-	-	15.6	-	-	18.1	-

Table 21 -Int. 2 - 2027 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS		\rightarrow EBT	EBR	wBL								$\stackrel{\downarrow}{4 B R}$
So Lanes and Sharing (\#RL)		\uparrow			\uparrow			4			\uparrow	
- Traffic Volume (vph)	8	399	7	2	444	26	5	3	7	17	3	10
O Future Volume (vph)	8	399	7	2	444	26	5	3	7	17	3	10
- Sign Control	-	Free	-	-	Free	-	-	Stop	-	-	Stop	-
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
- Critical Gap, tC (s)	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
- Follow Up Time, tF (s)	2.2	-	-	2.2	-	-	3.5	4.0	3.3	3.5	4.0	3.3
- Volume to Capacity Ratio	0.01	0.01	0.01	0.00	0.00	0.00	0.05	0.05	0.05	0.11	0.11	0.11
- Control Delay [s]	0.1	0.3	0.3	0.0	0.1	0.1	16.1	16.1	16.1	18.9	18.9	18.9
- Level of Service	A	A	A	A	A	A	C	C	C	C	C	C
- Queue Length 95th (ft)	1	1	1	0	0	0	4	4	4	9	9	9
\bigcirc Approach Delay (s)	-	0.3	-	-	0.1	-	-	16.1	-	-	18.9	-

3. Int. 3 - 7000N/1750W 2027 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 3, without and with the development, are shown in the following figures.

Table 22-Int. 3-2027 Peak Hr MOEs without the Development

HCM 2000 SIGNING SETTINGS		EBR	NBL		SBT	SBR
∞ Lanes and Sharing (\#RL)	*			\uparrow	\hat{F}	
- Traffic Volume (vph)	2	2	2	3	5	2
- Future Volume (vph)	2	2	2	3	5	2
- Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s)	6.4	6.2	4.1	-	-	-
- Follow Up Time, F (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.00	0.00	0.00	0.00	0.00	0.00
O Control Delay [s]	8.5	8.5	0.0	2.9	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
- Approach Delay [s]	8.5	-	-	2.9	0.0	-

Table 23-Int. 3-2027 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS			NBL			$\begin{aligned} & 4 \\ & \text { SBR } \end{aligned}$
© Lanes and Sharing (\#RL)	*			\uparrow	\hat{F}	
- Traffic Volume [vph]	[8	16	3	5	3
- Future Volume (vph)	3	8	16	3	5	3
- Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	6.4	6.2	4.1	-	-	-
- Follow Up Time, FF (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.01	0.01	0.01	0.01	0.00	0.00
- Control Delay [s]	8.5	8.5	0.1	6.2	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	1	1	1	1	0	0
\bigcirc Approach Delay (s)	8.5	-	-	6.2	0.0	-

4. Int. 4 - 7000N/Solstice Circle East 2027 PM Peak Hr Traffic Conditions (New Intersection)

Since this intersection only exists with the development, only traffic volumes with the development are included.

Table 24-Int. 4-2027 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS		EBR	WBL	$\begin{aligned} & \text { WBT } \\ & \text { WB } \end{aligned}$	$\frac{4}{N B L}$	NBR
∞ Lanes and Sharing (\#RL)	t			*	\%	
- Traffic Volume (vph)	7	1	8	11	1	4
- Future Volume (vph)	7	1	8	11	1	4
- Sign Control	Free	-	-	Free	Stop	-
∞ Median Width (t ()	[]	-	-	0	12	-
∞ TWLTL Median	\square	-	-	\square	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	-	-	4.1	-	6.4	6.2
- Follow Up Time, tF [s]	-	-	2.2	-	3.5	3.3
- Volume to Capacity Ratio	0.01	0.01	0.01	0.01	0.00	0.00
O Control Delay [s]	0.0	0.0	0.0	3.1	8.4	8.4
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (t ()	0	0	0	0	0	0
\bigcirc Approach Delay [s]	0.0	-	-	3.1	8.4	-

5. Int. 5 - 7000N/Solstice Circle West 2027 PM Peak Hr Traffic Conditions (New Intersection)

Since this intersection only exists with the development, only traffic volumes with the development are included.

Table 25-Int. 5-2027 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS	\rightarrow	EBR	WBL	*-	4	NBR
∞ Lanes and Sharing (\#RL)	$\hat{\dagger}$			\uparrow	M	
- Traffic Volume (vph)	5	1	7	5	1	3
- Future Volume (vph]	5	1	7	5	1	3
- Sign Control	Free	-	-	Free	Stop	-
∞ Median Width (ft)	[]	-	-	0	12	-
∞ TWLTL Median	\square	-	-	\square	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	-	-	4.1	-	6.4	6.2
- Follow Up Time, FF (s)	-	-	2.2	-	3.5	3.3
- Volume to Capacity Ratio	0.00	0.00	0.00	0.00	0.00	0.00
- Control Delay [s]	0.0	0.0	0.0	4.5	8.4	8.4
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
\bigcirc Approach Delay [s]	0.0	-	-	4.5	8.4	-

H. Turn Lane Warrants Based on Safety Analysis of Intersections

1. 2027 Left Turn Lane Analysis

Intersection \#1 and \#2 were evaluated for safety using ITD guidelines which recommend using the National Cooperative Highway Research Report 745 -Left-Turn Accommodations at Unsignalized Intersections (NCHRP 745) to evaluate left-hand turns and National Cooperative Highway Research Report 457: Evaluating Intersection Improvements: An Engineering Study Guide (NCHRP 457) to evaluate right-turn movements to determine if turning movements are consistent with national standards for safety based on traffic volumes. These guidelines show that if a three-leg intersection has traffic higher than 200 vph per lane on the major roadway and more than 150 vph per lane on a four-leg intersection, a left turn is warranted (see left-turn lane warrant chart in Chapter 4). Based on the ITD guidelines, no new turn-lanes are warranted from the increase (including the projected traffic generated by the proposed development) in traffic from 2022 to 2027 (see Appendix K for the left-turn worksheet).

2. $\mathbf{2 0 2 7}$ Right Turn Lane Analysis

The Right-hand turn warrant analysis follows the guidance found in ITD's Traffic Manual: Idaho's Supplementary Guide to the MUTCD (reference the right-turn lane warrant chart in Chapter 4). Based on these guidelines, no right turning lanes are warranted for existing conditions (see Appendix K for the right-turn worksheet).

I. 2027 PM Peak Hr Traffic Conditions Summary without and with the Development

This chapter has identified the following:

1. Segments

d. Seg. 1: 3000W without the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.
e. Seg. 1: 3000W with the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.
f. Seg. 2: 2000W without the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.
g. Seg. 2: 2000W with the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.

h. Segment Summary

The following tables are a summary of each segment's v / c ratio and LOS for each direction without and with the development.

Table 26 -Seg. 1 3000W 2027 Segments Traffic Condition Summary

3000W	2022		2027		3000W	2022		2027	
Direction	v/c	LOS	v/c	LOS	Direction	v/c	LOS	v/c	LOS
Northeast	0.014	A	0.015	A	Northeast	0.014	A	0.016	A
Southwest	0.008	A	0.009	A	Southwest	0.008	A	0.010	A
Without the Development					With the Development				

Table 27 -Seg. 2 2000W 2027 Segments Traffic Condition Summary

2000 W	2022		2027	
Direction	v/c	LOS	v/c	LOS
Northbound	0.011	A	0.012	A
Southbound	0.012	A	0.013	A
Without the Development				

2000 W	2022		2027	
Direction	v/c	LOS	v/c	LOS
Northbound	0.011	A	0.022	A
Southbound	0.012	A	0.018	A
With the Development				

2. Intersections

a. Int. 1: Hwy 33/3000W without the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of B during the PM peak hour of the day.
b. Int. 1: Hwy 33/3000W with the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of B during the PM peak hour of the day.
c. Int. 2: Hwy 33/2000W without the Development

The delay times, v/c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of C during the PM peak hour of the day.
d. Int. 2: Hwy 33/2000W with the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of C during the PM peak hour of the day.
e. Int. 3: 7000N/1750W without the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.
f. Int. 3: 7000N/1750W with the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.
g. Int. 4-7000N/Solstice Circle East (New Intersection) with the Development The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.
h. Int. 5-7000N/Solstice Circle West (New Intersection) with the Development The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.

i. Intersection Summary

The following tables are a summary of each intersection's LOS and delay time for each turning movement. It should be noted that by adding the trips generated by the development, none of the LOS's degraded.

Table 28 -Int. 12027 Traffic Condition Summary without and with the Development

Int 1 - Hwy 33/3000W - Build LOS and Delay Times without the Development												
	Northeastbound			Southeastbound			Northwestbound			Southwestbound		
	Left	Thru	Right									
2027 Traffic	n/a	n/a	n/a	8	336	n/a	n/a	375	18	10	n/a	5
LOS	n/a	n/a	n/a	A	A	n/a	n/a	A	A	B	n/a	B
Delay	n/a	n/a	n/a	0.1	0.3	n/a	n/a	0	0	14.2	n/a	14.2

Int 1 - Hwy 33/3000W - Build LOS and Delay Times with the Development												
	Northeastbound			Southeastbound			Northwestbound			Southwestbound		
	Left	Thru	Right									
2027 Traffic	n/a	n/a	n/a	9	336	n/a	n/a	375	19	11	n/a	6
LOS	n/a	n/a	n/a	A	A	n/a	n/a	A	A	B	n/a	B
Delay	n/a	n/a	n/a	0.1	0.3	n/a	n/a	0	0	14	n/a	14

Table 29 -Int. 22027 Traffic Condition Summary without and with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2027 Traffic	5	399	7	2	444	15	5	2	7	13	2	8
LOS	A	A	A	A	A	A	C	C	C	C	C	C
Delay	0.1	0.1	0.1	0	0.1	0.1	15.6	15.6	15.6	18.1	18.1	18.1

Int 2 - Hwy 33/2000W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2027 Traffic	8	399	7	2	444	26	5	3	7	17	3	10
LOS	A	A	A	A	A	A	C	C	C	C	C	C
Delay	0.1	0.3	0.3	0	0.1	0.1	16.1	16.1	16.1	18.9	18.9	18.9

Table 30 -Int. 32027 Traffic Condition Summary without and with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2027 Traffic	2	n/a	2	n/a	n/a	n/a	2	3	n/a	n/a	5	2
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	8.5	n/a	8.5	n/a	n/a	n/a	0	2.9	n/a	n/a	0	0

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2027 Traffic	3	n/a	8	n/a	n/a	n/a	16	3	n/a	n/a	5	3
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	8.5	n/a	8.5	n/a	n/a	n/a	0.1	6.2	n/a	n/a	0	0

Table 31 -Int. 42027 Traffic Condition Summary with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2027 Traffic	n/a	7	1	8	11	n/a	1	n/a	4	n/a	n/a	n/a
LOS	n/a	A	A	A	A	n/a	A	n/a	A	n/a	n/a	n/a
Delay	n/a	0	0	0	3.1	n/a	8.4	n/a	8.4	n/a	n/a	n/a

Table 32 -Int. 52027 Traffic Condition Summary with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2027 Traffic	n/a	5	1	7	5	n/a	1	n/a	3	n/a	n/a	n/a
LOS	n/a	A	A	A	A	n/a	A	n/a	A	n/a	n/a	n/a
Delay	n/a	0	0	0	4.5	n/a	8.4	n/a	8.4	n/a	n/a	n/a

3. Turn Lane Analysis

a. Left Turn Lane Analysis

Based on the ITD guidelines, no new turn-lanes are warranted from the increase (including the projected traffic generated by the proposed development) in traffic from 2022 to 2027

b. Right Turn Lane Analysis

Right turns lanes are not warranted for either intersection on Hwy 33 for the 2027 buildout.

4. Overall Summary for 2027

a. 2022 Existing Conditions Review

In summary, the following was determined to be operating at an unacceptable level for the 2022 existing conditions:

1. Int. 1 Hwy 33/3000W: Southeast bound, left turning traffic, exceeds the minimum levels
2. Int. 2 Hwy 33/2000W: Eastbound, left turning traffic, exceeds the minimum levels
3. Int. 2 Hwy 33/2000W: Westbound, left turning traffic, exceeds the minimum levels
(1) 2022 Mitigation Measures

It is recommended that a left turn lane be constructed on Hwy 33 for the southeast bound traffic at Int. 1 and that left turn lanes be constructed for both the eastbound and westbound traffic on Hwy 33 at Int. 2.
b. 2027 Buildout Conditions

Besides those areas noted for the 2022 existing conditions, no new LOS has been identified as operating at an unacceptable level for the 2027 buildout year.

5. Mitigation Measures

Since no new areas are identified to be operating at an unacceptable level, no new mitigation measures are warranted for the 2027 buildout year.

IX. 2047 Horizon Year Traffic Analysis

A. On-Site Development

Buildout is assumed to be complete by the year 2027. This chapter will analyze the forecasted conditions for the 20-years after buildout.

B. Traffic Forecasting

The traffic counts from Chapter 6 were increased by the annual growth rate percentages to establish the background traffic. This chapter will analyze two (2) scenarios for each segment and intersection; 2047 background traffic (without the development) and 2047 background plus site traffic (with the development).

C. Roadway Network

Within the area of influence there will be two (2) roadway segments, three (3) existing intersections, and two (2) future intersection studied. The segments and the intersections that will analyzed are:

1. Segment $\# 1-3000 \mathrm{~W}$
2. Segment \#2-2000W
3. Intersection \#1 - Hwy $33 / 3000$ W
4. Intersection \#2 - Hwy $33 / 2000 \mathrm{~W}$
5. Intersection $\# 3-7000 \mathrm{~N} / 1750 \mathrm{~W}$
6. Intersection $\# 4-7000 \mathrm{~N} /$ Solstice Circle East (new intersection)
7. Intersection $\# 5-7000 \mathrm{~N} /$ Solstice Circle West (new intersection)

D. 2047 PM Peak Segment Traffic Volumes

1. Seg. 1 - 3000W 2047 PM Peak Segment Traffic Volumes

a. 2047 Background 3000W PM Peak Hour Flow

The traffic volumes for the 2027 Horizon Year were increased by the annual growth rate to forecast the 2047 Background Traffic. The results of this forecast 44 vph headed northeast and 25 vph headed southwest during pm peak hour.
b. 2047 Background plus Site Traffic 3000W PM Peak Hour Flow

The traffic generated by the development was added to the 2047 Background Traffic. The results of this forecast 46 vph headed northeast and 27 vph headed southwest during pm peak hour after buildout.

2. Seg. 2-2000W 2047 PM Peak Segment Traffic Volumes

c. 2047 Background 2000W PM Peak Hour Flow

The traffic volumes for the 2027 Horizon Year were increased by the annual growth rate to forecast the 2047 Background Traffic. The results of this forecast 34 vph headed northbound and 38 vph headed southbound during pm peak hour.
d. 2047 Background plus Site Traffic 2000W PM Peak Hour Flow

The traffic generated by the development was added to the 2047 Background Traffic. The results of this forecast 51 vph headed northbound and 45 vph headed southbound during pm peak hour after buildout.

E. 2047 PM Peak Intersection Traffic Volumes

The traffic volumes for the 2027 Horizon Year were increased by the annual growth rate to forecast the 2047 Background Traffic for each intersection. The following sections show the forecasted intersection traffic volumes without and with the proposed development.

1. Int. 1 - Hwy 33/3000W 2047 PM Peak Segment Traffic Volumes

Figure 26: Hwy 33/3000W 2047 Traffic Volumes without and with the Development
2. Int. 2 - Hwy 33/2000W 2047 PM Peak Segment Traffic Volumes

Figure 27: Hwy 33/2000W 2047 Traffic Volumes without and with the Development
3. Int. 3 - 7000N/1750W 2047 PM Peak Segment Traffic Volumes

Figure 28: 7000N/1750W 2047 Traffic Volumes without and with the Development
4. Int. 4 - 7000N/Solstice East 2047 PM Peak Segment Traffic Volumes

Since this intersection only exists with the development, only traffic volumes with the development are included.

Figure 29: 7000N/Solstice Circle East 2047 Traffic Volumes with the Development

5. Int. 5-7000N/Solstice West 2047 PM Peak Segment Traffic Volumes

Since this intersection only exists with the development, only traffic volumes with the development are included.

Figure 30: 7000N/Solstice Circle West 2047 Traffic Volumes with the Development

F. 2047 Segment PM Peak Hr Traffic Conditions

The traffic counts shown previously in the chapter were used to determine the forecasted conditions without and with the proposed development. The following sections identify the projected LOS for each segment for both scenarios.

1. Seg. 1 - 3000W 2047 PM Peak Hr Segment Traffic Conditions

a. Seg. 1-2047 Background 3000W PM Peak Hr Traffic Conditions

The visual counts that were seasonally adjusted show that there were 44 vph heading northeast and 25 vph heading southwest during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.026 for northeast bound traffic and 0.014 for southwest bound traffic. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
b. Seg. 1-2047 Background plus Site Traffic 3000W PM Peak Hr Traffic Conditions The traffic generated by the development was added to the 2047 Background Traffic. The results show that there are 46 vph heading northeast and 27 vph heading southwest during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.027 for northeast bound traffic and 0.016 for southwest bound traffic. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
c. Seg. 1-2047 Background plus Site Traffic 3000W PM Peak Hr Mitigation Measures Since the worst LOS is an A, no improvements are warranted for the existing segment conditions.

2. Seg. 2 - 2000W 2047 PM Peak Hr Segment Traffic Conditions

a. Seg. 2-2047 Background 2000W PM Peak Hr Traffic Conditions

The visual counts that were seasonally adjusted show that there are 34 vph heading northbound and 38 vph heading southbound during the pm peak hour. Dividing these volumes by 1700 vph , the v / c ratio is 0.020 for northbound and 0.022 for southbound. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
b. Seg. 2 - 2047 Background plus Site Traffic 2000W PM Peak Hr Traffic Conditions The traffic generated by the development was added to the 2047 Background Traffic. The results show that there are 51 vph heading northbound and 45 vph heading southbound during the pm peak hour. Dividing these volumes by 1700 vph , the v/c ratio is 0.030 for northbound and 0.026 for southbound. The terrain within the study area is considered level and a 0% no passing zone will be used. This results in a LOS of A for both directions.
c. Seg. 2-2047 Background plus Site Traffic 2000W PM Peak Hr Mitigation Measures Since the worst LOS is an A, no improvements are warranted for the existing segment conditions.

G. 2047 Intersection PM Peak Hr Traffic Conditions

In order to determine how well an intersection is functioning, the intersection's Measures of Effectiveness (MOEs) for the peak hour is analyzed. The MOEs include:

1. Level of Service (LOS)
2. Control Delay
3. Volume/Capacity Ratio (V/C Ratio)
4. $95^{\text {th }}$ Percentile Queue

Using the traffic volumes and turning movements shown previously, the 2047 MOEs for the intersections, without and with the development, can be determined.

1. Int. 1 - Hwy 33/3000W 2047 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 1, without and with the development, are shown in the following figures.

Table 33-Int. 1 - 2047 Peak Hr MOEs without the Development

HCM 2000 SIGNING SETTINGS				$\%$		
∞ Lanes and Sharing (\#RL)	*		F			\uparrow
- Traffic Volume (vph)	17	8	625	31	14	561
O Future Volume (vph)	17	8	625	31	14	561
- Sign Control	Stop \checkmark		Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	6.4	6.2	-	-	4.1	
- Follow Up Time, tF [s]	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.13	0.13	0.42	0.42	0.02	0.02
- Control Delay (s)	24.7	24.7	0.0	0.0	0.2	0.5
- Level of Service	C	C	A	A	A	A
- Queue Length 95th (ft)	11	11	0	0	1	1
- Approach Delay [s]	24.7	-	0.0	-	-	0.5

Table 34 -Int. 1 - 2047 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS						SBT
∞ Lanes and Sharing (\#RL)	M		\dagger			\uparrow
- Traffic Volume (vph)	18	9	625	32	15	561
O Future Volume (vph)	18	9	625	32	15	561
\bigcirc - Sign Control	Stop	-	Free	-	-	Free
∞ Median Width (ft)	12	-	0	-	-	0
∞ TWLTL Median	\square	-	\square	-	-	\square
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s)	6.4	6.2	-	-	4.1	-
- Follow Up Time, F (s)	3.5	3.3	-	-	2.2	-
- Volume to Capacity Ratio	0.14	0.14	0.42	0.42	0.02	0.02
- Control Delay [s]	25.1	25.1	0.0	0.0	0.3	0.5
- Level of Service	D	D	A	A	A	A
O Queue Length 95th (ft)	12	12	0	0	1	1
- Approach Delay (s)	25.1	-	0.0	-	-	0.5

2. Int. 2 - Hwy 33/2000W 2047 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 2, without and with the development, are shown in the following figures.

Table 35-Int. 2 - 2047 Peak Hr MOEs without the Development

HCM 2000 SIGNING SETTINGS	$\begin{aligned} & 7 \\ & \mathrm{EBL} \end{aligned}$		EBR	$\underset{W B L}{ }$	WBT			\uparrow			$\stackrel{\downarrow}{\mathrm{SBT}}$	SBR
∞ Lanes and Sharing (\#RL)	\uparrow			\dagger			¢			\uparrow		
- Traffic Volume [vph]	8	665	11	3	741	25	8	3	11	22	3	14
- Future Volume (vph]	8	665	11	3	741	25	8	3	11	22	3	14
- Sign Control		Free	-	-	Free	-	-	Stop	-	-	Stop	-
co Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
\bigcirc - Critical Gap, tC [s)	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
- Follow Up Time, IF [s]	2.2	-	-	2.2	-	-	3.5	4.0	3.3	3.5	4.0	3.3
\bigcirc - Volume to Capacity Ratio	0.01	0.01	0.01	0.00	0.00	0.00	0.17	0.17	0.17	0.36	0.36	0.36
- Control Delay (s)	0.2	0.3	0.3	0.1	0.1	0.1	35.1	35.1	35.1	52.1	52.1	52.1
- Level of Service	A	A	A	A	A	A	E	E	E	F	F	F
- Queue Length 95th (it)	1	1	1	0	0	0	15	15	15	36	36	36
\bigcirc Approach Delay (s)	-	0.3	-	-	0.1	-	-	35.1	-	-	52.1	

Table 36-Int. 2 - 2047 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS	EBL		EBR	WBL	*-		4		$\underset{\text { NBR }}{p}$		SBT	$\stackrel{\downarrow}{4 B R}$
∞ Lanes and Sharing (\#RL)		\&			*			*			*	
- Traffic Volume (vph)	11	665	11	3	741	36	8	4	11	26	4	16
- Future Volume (vph)	11	665	11	3	741	36	8	4	11	26	4	16
- Sign Control	-	Free	-	-	Free	-	-	Stop	-	-	Stop	-
∞ Median Width (ft)	-	0	-	-	0	-	-	0	-	-	0	-
∞ TWLTL Median	-	\square	-									
∞ Right Turn Channelized	-	-	None									
- Critical Gap, tC [s]	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
- Follow Up Time, LF (s)	2.2	-	-	2.2	-	-	3.5	4.0	3.3	3.5	4.0	3.3
- Volume to Capacity Ratio	0.02	0.02	0.02	0.00	0.00	0.00	0.18	0.18	0.18	0.43	0.43	0.43
\bigcirc Control Delay (s)	0.3	0.4	0.4	0.1	0.1	0.1	37.1	37.1	37.1	59.4	59.4	59.4
- Level of Service	A	A	A	A	A	A	E	E	E	F	F	F
- Queue Length 95th (ft)	1	1	1	0	0	0	16	16	16	47	47	47
- Approach Delay [s]	-	0.4	-	-	0.1	-	-	37.1	-	-	59.4	

3. Int. 3 - 7000N/1750W 2047 PM Peak Hr Traffic Conditions

The traffic volumes, identified at the beginning of this chapter, were entered into the computer modeling software Synchro. The results from the model for Intersection 3, without and with the development, are shown in the following figures.

Table 37-Int. 3-2047 Peak Hr MOEs without the Development

HCM 2000 SIGNING SETTINGS		EBR	4 NBL		SBT	$\frac{\downarrow}{5 B R}$
∞ Lanes and Sharing (\#RL)	M			\uparrow	F	
- Traffic Volume (vph)	3	3	3	6	8	3
- Future Volume (vph)	3	3	3	6	8	3
\bigcirc - Sign Control	Stop		-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s)	6.4	6.2	4.1	-	-	-
- Follow Up Time, tF (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.01	0.01	0.00	0.00	0.01	0.01
- Control Delay [s]	8.5	8.5	0.0	2.2	0.0	0.0
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
- Approach Delay [s]	8.5	-	-	2.2	0.0	

Table 38 -Int. 3 - 2047 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS	4	EBR				$\stackrel{\downarrow}{4 B R}$
∞ Lanes and Sharing (\#RL)	M			${ }_{\wedge}$	F	
- Traffic Volume (vph)	4	9	17	6	8	4
O Future Volume (vph)	4	9	17	6	8	4
- Sign Control	Stop	-	-	Free	Free	-
∞ Median Width (ft)	12	-	-	0	0	-
∞ TWLTL Median	\square	-	-	\square	\square	
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s)	6.4	6.2	4.1	-	-	-
- Follow Up Time, F (s)	3.5	3.3	2.2	-	-	-
- Volume to Capacity Ratio	0.01	0.01	0.01	0.01	0.01	0.01
- Control Delay (s)	8.5	8.5	0.1	5.3	0.0	0.0
- Level of Service	A	A	A	A	A	A
O Queue Length 95th (ft)	1	1	1	1	0	0
- Approach Delay [s]	8.5	-	-	5.3	0.0	-

4. Int. 4 - 7000N/Solstice Circle East 2047 PM Peak Hr Traffic Conditions (New Intersection)

Since this intersection only exists with the development, only traffic volumes with the development are included.

Table 39-Int. 4-2047 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS		EBR	WBL	$\begin{aligned} & \text { 廿- } \\ & \text { WBT } \end{aligned}$	4	NBR
∞ Lanes and Sharing (\#RL)	\uparrow			\uparrow	M	
- Traffic Volume (vph)	9	1	8	13	1	4
O Future Volume (vph]	9	1	8	13	1	4
- Sign Control	Free \checkmark	-	-	Free	Stop	
∞ Median Width (ft)	0	-	-	0	12	-
∞ TWLTL Median	\square	-	-	\square	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC [s]	-	-	4.1	-	6.4	6.2
- Follow Up Time, F (s)	-	-	2.2	-	3.5	3.3
- Volume to Capacity Ratio	0.01	0.01	0.01	0.01	0.00	0.00
- Control Delay [s]	0.0	0.0	0.0	2.9	8.5	8.5
- Level of Service	A	A	A	A	A	A
- Queue Length 95th (ft)	0	0	0	0	0	0
\bigcirc Approach Delay [s]	0.0	-	-	2.9	8.5	-

5. Int. 5 - 7000N/Solstice Circle West 2047 PM Peak Hr Traffic Conditions (New Intersection)

Since this intersection only exists with the development, only traffic volumes with the development are included.

Table 40 -Int. 5 - 2047 Peak Hr MOEs with the Development

HCM 2000 SIGNING SETTINGS	\rightarrow	EBR	$\underset{\text { WBL }}{ }$	*-	NBL	$\underset{\text { NBR }}{P}$
∞ Lanes and Sharing (\#RL)	\dagger			\uparrow	\%	
- Traffic Volume (vph)	7	1	7	14	1	3
- Future Volume (vph)	7	1	7	14	1	3
- Sign Control	Free \checkmark	-	-	Free	Stop	-
∞ Median Width (ft)	0	-	-	0	12	-
∞ TWLTL Median	\square		-	\square	\square	-
∞ Right Turn Channelized	-	None	-	None	-	None
- Critical Gap, tC (s)	-	-	4.1	-	6.4	6.2
- Follow Up Time, tF (s)	-	-	2.2	-	3.5	3.3
- Volume to Capacity Ratio	0.01	0.01	0.00	0.00	0.00	0.00
- Control Delay [s]	0.0	0.0	0.0	2.5	8.5	8.5
- Level of Service	A	A	A	A	A	A
O Queue Length 95th (t ()	0	0	0	0	0	0
- Approach Delay [s]	0.0	-	-	2.5	8.5	-

H. Turn Lane Warrants Based on Safety Analysis of Intersections

1. 2047 Left Turn Lane Analysis

Intersection \#1 and \#2 were evaluated for safety using ITD guidelines which recommend using the National Cooperative Highway Research Report 745 -Left-Turn Accommodations at Unsignalized Intersections (NCHRP 745) to evaluate left-hand turns and National Cooperative Highway Research Report 457: Evaluating Intersection Improvements: An Engineering Study Guide (NCHRP 457) to evaluate right-turn movements to determine if turning movements are consistent with national standards for safety based on traffic volumes. These guidelines show that if a three-leg intersection has traffic higher than 200 vph per lane on the major roadway and more than 150 vph per lane on a four-leg intersection, a left turn is warranted (see left-turn lane warrant chart in Chapter 4).

It was found in the 2022 Existing Conditions Chapter that left turn lanes are warranted at Intersection 1 for eastbound traffic and at Intersection 2 for both eastbound and westbound traffic. Based on the ITD guidelines, no new turn-lanes are warranted from the increase (including the projected traffic generated by the proposed development) in traffic from 2027 to 2047 (see Appendix K for the left-turn worksheet).

2. 2047 Right Turn Lane Analysis

The Right-hand turn warrant analysis follows the guidance found in ITD's Traffic Manual: Idaho's Supplementary Guide to the MUTCD (reference the right-turn lane warrant chart in Chapter 4).

Based on these guidelines, it has been determined that the forecasted traffic for 2047 warrant right turn lanes for the westbound traffic at Intersection 1 and for the westbound traffic at Intersection 2. (see Appendix K for the right-turn worksheet).

I. 2047 PM Peak Hr Traffic Conditions Summary without and with the Development

This chapter has identified the following:

1. Segments

a. Seg. 1: 3000W without the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.
b. Seg. 1: 3000W with the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.
c. Seg. 2: 2000W without the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.
d. Seg. 2: 2000W with the Development

The segment/link v/c ratio results in a LOS of A. Therefore, in accordance with ITD guidelines, no improvements are warranted for the existing conditions.

e. Segment Summary

The following tables are a summary of each segment's v/c ratio and LOS for each direction without and with the development.

Table 41 -Seg. 1 3000W 2047 Segments Traffic Condition Summary

3000W	2022		2027		2047		3000W	2022		2027		2047	
Direction	v/c	LOS	v/c	LOS	v/c	LOS	Direction	v/c	LOS	v/c	LOS	v/c	LOS
Northeast	0.014	A	0.015	A	0.026	A	Northeast	0.014	A	0.016	A	0.027	A
Southwest	0.008	A	0.009	A	0.014	A	Southwest	0.008	A	0.010	A	0.016	A
Without the Development								With	he D	evelop	ment		

Table 42 -Seg. 2 2000W 2047 Segments Traffic Condition Summary

2000 W	2022		2027	2047		
Direction	v/c	LOS	v/c	LOS	v/c	LOS
Northbound	0.011	A	0.012	A	0.020	A
Southbound	0.012	A	0.013	A	0.022	A
Without the Development						

2000 W	2022		2027		2047	
Direction	v/c	LOS	v/c	LOS	v/c	LOS
Northbound	0.011	A	0.022	A	0.030	A
Southbound	0.012	A	0.018	A	0.026	A
With the Development						

2. Intersections

a. Int. 1: Hwy 33/3000W without the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of C during the PM peak hour of the day.
b. Int. 1: Hwy 33/3000W with the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of D during the PM peak hour of the day.
c. Int. 2: Hwy 33/2000W without the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of F during the PM peak hour of the day.

d. Int. 2: Hwy 33/2000W with the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of F during the PM peak hour of the day.
e. Int. 3: 7000N/1750W without the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.

f. Int. 3: 7000N/1750W with the Development

The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.
g. Int. 4-7000N/Solstice Circle East (New Intersection) with the Development The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.
h. Int. 5-7000N/Solstice Circle West (New Intersection) with the Development The delay times, v / c ratio, and LOS indicate that the intersection's worst turning movement is operating at a LOS of A during the PM peak hour of the day.

i. Intersection Summary

Intersection 1 is forecasted to operate in an acceptable range but is near unacceptable with a max LOS of D. Intersection 2 is forecasted to operate in an unacceptable range in the 2047 horizon year with a max LOS of F. The remaining intersections are forecasted to operate within an acceptable range for the 2047 horizon year. The following tables are a summary of each intersection's LOS and delay time for each turning movement.

Table 43 -Int. 12047 Traffic Condition Summary without and with the Development

	Northeastbound			Southeastbound			Northwestbound			Southwestbound		
	Left	Thru	Right									
2047 Traffic	n/a	n/a	n/a	14	561	n/a	n/a	625	31	17	n/a	8
LOS	n/a	n/a	n/a	A	A	n/a	n/a	A	A	C	n/a	C
Delay	n/a	n/a	n/a	0.2	0.5	n/a	n/a	0	0	24.7	n/a	24.7

Int 1 - Hwy 33/3000W - Build LOS and Delay Times with the Development												
	Northeastbound			Southeastbound			Northwestbound			Southwestbound		
	Left	Thru	Right									
2047 Traffic	n/a	n/a	n/a	15	561	n/a	n/a	625	32	18	n/a	9
LOS	n/a	n/a	n/a	A	A	n/a	n/a	A	A	D	n/a	D
Delay	n/a	n/a	n/a	0.3	0.5	n/a	n/a	0	0	25.1	n/a	25.1

Table 44-Int. 22047 Traffic Condition Summary without and with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2047 Traffic	8	665	11	3	741	25	8	3	11	22	3	14
LOS	A	A	A	A	A	A	E	E	E	F	F	F
Delay	0.2	0.3	0.3	0.1	0.1	0.1	35.1	35.1	35.1	52.1	52.1	52.1

Int 2 - Hwy 33/2000W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2047 Traffic	11	665	11	3	741	36	8	4	11	26	4	16
LOS	A	A	A	A	A	A	E	E	E	F	F	F
Delay	0.3	0.4	0.4	0.1	0.1	0.1	37.1	37.1	37.1	59.4	59.4	59.4

Table 45 -Int. 32047 Traffic Condition Summary without and with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2047 Traffic	3	n/a	3	n/a	n/a	n/a	3	6	n/a	n/a	8	3
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	8.5	n/a	8.5	n/a	n/a	n/a	0	2.2	n/a	n/a	0	0

Int 3-7000N/1750W - Build LOS and Delay Times with the Development												
	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2047 Traffic	4	n/a	9	n/a	n/a	n/a	17	6	n/a	n/a	8	4
LOS	A	n/a	A	n/a	n/a	n/a	A	A	n/a	n/a	A	A
Delay	8.5	n/a	8.5	n/a	n/a	n/a	0.1	5.3	n/a	n/a	0	0

Table 46 -Int. 42047 Traffic Condition Summary with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2047 Traffic	n/a	9	1	8	13	n/a	1	n/a	4	n/a	n/a	n/a
LOS	n/a	A	A	A	A	n/a	A	n/a	A	n/a	n/a	n/a
Delay	n/a	0	0	0	2.9	n/a	8.5	n/a	8.5	n/a	n/a	n/a

Table 47 -Int. 52047 Traffic Condition Summary with the Development

	Eastbound			Westbound			Northbound			Southbound		
	Left	Thru	Right									
2047 Traffic	n/a	7	1	7	14	n/a	1	n/a	3	n/a	n/a	n/a
LOS	n/a	A	A	A	A	n/a	A	n/a	A	n/a	n/a	n/a
Delay	n/a	0.01	0.01	0	2.5	n/a	8.5	n/a	8.5	n/a	n/a	n/a

3. Turn Lane Analysis

a. Left Turn Lane Analysis

Based on the ITD guidelines, no new turn-lanes are warranted from the increase (including the projected traffic generated by the proposed development) in traffic from 2022 to 2027

b. Right Turn Lane Analysis

Right turns lanes are not warranted for either intersection on Hwy 33 for the 2027 buildout.

4. Overall Summary for 2047

a. 2022 Existing Conditions Review

In summary, the following was determined to be operating at an unacceptable level for the 2022 existing conditions:

1. Int. 1 Hwy 33/3000W: Southeast bound, left turning traffic, exceeds the minimum levels
2. Int. 2 Hwy 33/2000W: Eastbound, left turning traffic, exceeds the minimum levels
3. Int. 2 Hwy 33/2000W: Westbound, left turning traffic, exceeds the minimum levels
(1) 2022 Mitigation Measures

It is recommended that a left turn lane be constructed on Hwy 33 for the southeast bound traffic at Int. 1 and that left turn lanes be constructed for both the eastbound and westbound traffic on Hwy 33 at Int. 2.

b. 2027 Buildout Conditions Review

Besides those areas noted for the 2022 existing conditions, no new LOS has been identified as operating at an unacceptable level for the 2027 buildout year.
(1) 2022 Mitigation Measures

Since no new areas are identified to be operating at an unacceptable level, no new mitigation measures are warranted for the 2027 buildout year.

c. 2047 Horizon Conditions Review

In summary, the following was determined to be operating at an unacceptable level for the 2047 conditions:

1. Int 1 Hwy $33 / 3000 \mathrm{~W}$: Northwest bound, right turning traffic, exceeds the minimum levels
2. Int. 2 Hwy 33/2000W: Northbound traffic left, thru, and right turning movement's LOS is E, without or with the development
3. Int. 2 Hwy 33/2000W: Southbound traffic left, thru, and right turning movement's LOS is F, without or with the development
4. Int 2 Hwy 33/2000W: Westbound, right turning traffic, exceeds the minimum levels

5. Mitigation Measures for the $\mathbf{2 0 4 7}$ Horizon Year Traffic

a. Int. 1: Hwy 33/3000W

It has been determined that the northwest bound traffic at Int. 1 Hwy 33/3000W warrants a right turn lane. It is recommended that a right turn lane be constructed before the 2047 Horizon Year to meet the minimum recommended guidelines.
b. Int. 2: Hwy 33/2000W

It has been determined that in 2047 the projected westbound traffic will require a right turn lane. It is recommended that a right turn lane be constructed to meet this minimum recommended guideline. Also, the northbound and southbound traffic is forecasted to be failed. It is recommended that right and left turn lanes be added to the north and south leg of the intersection.
(1) 2047 Mitigation Measures Traffic Analysis

The following figure shows the projected layout and traffic volumes for the 2047 mitigation measures; this includes the addition of left turn lanes for both the eastbound and westbound traffic (warranted for the 2022 Existing Conditions), a westbound right turn lane (warranted for the 2047 Horizon Year), a northbound right and left turn lane (warranted for the 2047 Horizon Year), a southbound right and left turn lane (warranted for the 2047 Horizon Year).

Figure 31： 2047 Horizon Year Mitigation Measures Improvements Layout and Volumes
The following shows the results of the mitigated measures traffic model．
Table 48－Int．2－2047 Peak Hr MOEs with the Development Mitigation Measures

HCM 2000 SIGNING SETTINGS			EBR		WBT							$\stackrel{\downarrow}{4 B R}$
∞ Lanes and Sharing（\＃RL）	11	\uparrow		${ }^{7}$	4	「	\％	4	「	\％	4	「
－Traffic Volume（vph）	8	665	11	3	741	25	8	3	11	22	3	14
－Future Volume（vph）	8	665	11	3	741	25	8	3	11	22	3	14
－Sign Control	－	Free	－	－	Free	－	－	Stop	－	－	Stop	－
∞ Median Width（ft）	－	12	－	－	12	－	－	12	－	－	12	－
∞ TWLTL Median	－	\checkmark	－	－	\checkmark	－	－	\square	－	－	\square	－
∞ Right Turn Channelized	－	－	None									
－Critical Gap，tC［s］	4.1	－	－	4.1	－	－	7.1	6.5	6.2	7.1	6.5	6.2
－Follow Up Time， F （s）	2.2	－	－	2.2	－	－	3.5	4.0	3.3	3.5	4.0	3.3
\bigcirc－Volume to Capacity Ratio	0.01	0.43	0.43	0.00	0.47	0.02	0.03	0.01	0.03	0.09	0.01	0.04
－Control Delay［s］	9.5	0.0	0.0	9.2	0.0	0.0	19.1	17.6	13.8	19.5	17.3	14.8
－Level of Service	A	A	A	A	A	A	C	C	B	C	C	B
－Queue Length 95th（ft）	1	0	0	0	0	0	3	1	2	7	1	3
－Approach Delay［s］	－	0.1	－	－	0.0	－	－	16.2	－	－	17.7	－

It can be seen from this table that by improving the intersection as outline，the projected traffic is forecasted to operate at an acceptable level in the 2047 Horizon Year．

X. Conclusions.

After evaluating the proposed development within the context of zoning; projected land use; existing transportation system; background traffic counts for the principal roadways within the study impact area; projected traffic for horizon years corresponding with project opening, project buildout, and a 20 -year horizon year; the findings of the Traffic Impact Study are summarized below. In order to simplify the forecasted traffic conditions as they have progressed through this study, the following three (3) tables were produced. The first table shows the forecasted progression of the roadway segments, the second table shows the intersections, and the third shows the left or right turn.

Table 49- Segment Traffic Conditions Progression Each Horizon Year

Segment 1: 3000w	Northeast V/C Ratio	LOS	Southwest V/C Ratio	LOS
2022 Existing Traffic	0.014	A	0.008	A
2027 Background plus Site Traffic	0.016	A	0.010	A
2047 Background plus Site Traffic	0.027	A	0.016	A

Segment 2: 2000W	Northbound V/C Ratio	LOS	Southbound V/C Ratio	LOS
2022 Existing Traffic	0.011	A	0.012	A
2027 Background plus Site Traffic	0.022	A	0.018	A
2047 Background plus Site Traffic	0.030	A	0.026	A

Table 50- Intersection Traffic Conditions Progression Each Horizon Year

Int 1: Hwy 33/3000W	Northeast Max Los	Southeast Max LOS	Northwest Max LOS	Southwest Max LOS
2022 Existing Traffic	n / a	A	A	B
2027 Background Traffic	n / a	A	A	B
2027 Background plus Site Traffic	n / a	A	A	B
2047 Background Traffic	n / a	A	A	C
2047 Background plus Site Traffic	n / a	A	A	D

Int 2: Hwy 33/2000w	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2022 Existing Traffic	A	A	B	C
2027 Background Traffic	A	A	C	C
2027 Background plus Site Traffic	A	A	C	C
2047 Background Traffic	A	A	E	F
2047 Background plus Site Traffic	A	A	E	F

Int 3: 7000N/1750W	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2022 Existing Traffic	A	n / a	A	A
2027 Background Traffic	A	n / a	A	A
2027 Background plus Site Traffic	A	n / a	A	A
2047 Background Traffic	A	n / a	A	A
2047 Background plus Site Traffic	A	n / a	A	A

$\left.$| Int 4: 7000N/Solstice East |
| :--- | :---: | :---: | :---: | :---: |
| (New) | | Eastbound |
| :---: |
| Max LOS | | Westbound |
| :---: |
| Max LOS | | Northbound |
| :---: |
| Max LOS | | Southbound |
| :---: |
| Max LOS | \right\rvert\,

Int 5: 7000N/Solstice West (New)	Eastbound Max LOS	Westbound Max LOS	Northbound Max LOS	Southbound Max LOS
2022 Existing Traffic	n / a	n / a	n / a	n / a
2027 Background Traffic	n / a	n / a	n / a	n / a
2027 Background plus Site Traffic	A	A	A	n / a
2047 Background Traffic	n / a	n / a	n / a	n / a
2047 Background plus Site Traffic	A	A	A	n / a

Table 51- Left and Right Turn Lane Progression Each Horizon Year

Int 1: Hwy 33/3000W	Left Turn Lane		Right Turn Lane	
	Southeast	Northwest	Southeast	Northwest
2022 Existing Traffic	Warranted	n/a	n/a	Not Warranted
2027 Background Traffic	Warranted	n/a	n/a	Not Warranted
2027 Background plus Site Traffic	Warranted	n/a	n/a	Not Warranted
2047 Background Traffic	Warranted	n/a	n/a	Warranted
2047 Background plus Site Traffic	Warranted	n/a	n/a	Warranted

Int 2: Hwy 33/2000W		Left Turn Lane		Right Turn Lane	
	Eastbound	Westbound	Eastbound	Westbound	
2022 Existing Traffic	Warranted	Warranted	Not Warranted	Not Warranted	
2027 Background Traffic	Warranted	Warranted	Not Warranted	Not Warranted	
2027 Background plus Site Traffic	Warranted	Warranted	Not Warranted	Not Warranted	
2047 Background Traffic	Warranted	Warranted	Not Warranted	Warranted	
2047 Background plus Site Traffic	Warranted	Warranted	Not Warranted	Warranted	

A. Existing Traffic Conditions (2022)

The existing traffic conditions were analyzed with the existing intersection control and lane configurations, all the road segments and intersections are operating within minimum operational thresholds except:

* Int. 1 Hwy 33/3000W: Southeast bound, left turning traffic, exceeds the minimum levels
* Int. 2 Hwy 33/2000W: Eastbound, left turning traffic, exceeds the minimum levels
* Int. 2 Hwy 33/2000W: Westbound, left turning traffic, exceeds the minimum levels

1. Mitigating Measures

It is recommended that a left turn lane be constructed on Hwy 33 for the southeast bound traffic at Int. 1 and that left turn lanes be constructed for both the eastbound and westbound traffic on Hwy 33 at Int. 2.

B. Projected Traffic

The projected land use for the build-out year of the proposed development is comprised of 17 main dwelling units and 17 accessory dwelling units (34 units total). All other uses remain the same as the existing conditions. The build-out conditions are expected to generate approximately 325 trips for the MADT and 26 trips during PM peak hour by year 2027.

C. 2027 Buildout Year Traffic Conditions Results

All segment capacity and intersection delay times/LOS are projected to operate within the minimum allowable operational thresholds. It was determined that for the 2022 existing conditions, left turn lanes are warranted at Intersection 1 and Intersection 2. For the 2027 buildout conditions, no new left turn lanes are warranted with or without the proposed development.

1. Mitigating Measures

For the 2027 buildout scenario no deficiencies were forecasted, therefore no mitigation measures are recommended.

D. 2047 Horizon Year Traffic Conditions Results

The forecasted 2047 traffic conditions were analyzed with the existing intersection control and lane configurations, all the road segments and intersections are within minimum operational thresholds except:

* Int 1 Hwy 33/3000W: Northwest bound, right turning traffic, exceeds the minimum levels
* Int. 2 Hwy 33/2000W: Northbound traffic left, thru, and right turning movement's LOS is E, without or with the development
* Int. 2 Hwy 33/2000W: Southbound traffic left, thru, and right turning movement's LOS is F, without or with the development
* Int 2 Hwy 33/2000W: Westbound, right turning traffic, exceeds the minimum levels

1. Mitigating Measures

Analysis shows that the addition of left turn lanes for both the eastbound and westbound traffic (warranted for the 2022 Existing Conditions), a westbound right turn lane (warranted for the 2047 Horizon Year), a northbound right and left turn lane (warranted for the 2047 Horizon Year), a southbound right and left turn lane (warranted for the 2047 Horizon Year) will create a road network that will operate within the minimum allowable thresholds.

E. Overall Study Summary

As can be seen from the tables in this chapter, the development is forecasted to have minimal impact to the traffic network within the study area. All segments and intersections are forecasted to operate below the allowable operation thresholds throughout the study time period. As can be seen in the tables presented in this chapter, the LOS at each intersection for each turning movement without or with the development are the same except for the southwest traffic in the 2047 Horizon Year (reference the red highlighted cell in Table 47). Even though the southwest traffic without and with the development is difference, they are still forecasted to operate at an acceptable level through the 2047 Horizon Year.

This study also determined that all the intersections, each direction, within the study area on Hwy 33 warrant a left turn lane for the current/existing conditions. Additionally, right turn lanes are warranted within the next 25 years for the northwest bound traffic at Int. 1 Hwy $33 / 3000 \mathrm{~W}$ and for the westbound traffic at Int. 2 Hwy 33/2000W without or with the development.

XI. Appendix A: Site Master Plan

Civilize, PLLC

XII. Appendix B: Traffic Counts

\#059-Newdale -ATR Averag Automatic Counter Volumes

Report Types

Year Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 24-Hour Annual Avg. 199083589512301375142815051876177713891396109118471324 1991859102110691327146116161820179915211580106610611352 1992102911311242155716351761207918771696134811499851455 199383591512081463166917062053183817241550116811591444 19941145113814151729167418422147203217621579123411721575 19951211124516601919215718832208214319221788140714091746 19961025128215281739176518862188207118141653127310491606 19971072123013291639189319972297219419361704142713991676 19981141128014791678186019012201217619351786146613531688 19991331130216841764189620842479239221241651147314331794 20001120131015781763182420382352234919831825150614841761 20011451151616951906199921222379233621551893166215711890 20021305148017861819204821522574245122582065175217231951 20031635163717371899210322022438239321211955164216271949 20841371159617851949203121702614238022271955181318161976 20051584174618461992219823632600239521082085176218222041 20061611173418702011229425072706276625002370197820792202 20071967217923212417266629803089331429772726235121732597 20081806170321702158230625332714253823412222184616322164 20091660172117681911218024832625241124142062170417002053 20101659171217931814203623602668232122632024158515181979 20111519150516671679188720972482223421801909150515351850 20121461156616151802184421552352221220441747151815671824 20131416153016041741189423062410210719761874162216121841 20141562155618051907199524402480229322172018170117301975 20151732183319282084208925082879268825222255195718612194 20161826200021472219236727443115295426552293201118382347 20171804191821542322252929913293340228802633226422512537 20182191215222462444273331463470316431262853229621692666 $201921391706 \quad 2604276431893526343430842666239523182697$ 20202157225719711920265130783430356534613015245424602701 20212519212927022809327639484073352930452528234922872933 2022235725472730277732423791421941454135368528692533

Civilize, PLLC

[^0]

XIII. Appendix C: 2022 Existing Conditions Traffic Model Results

XIV. Appendix D: 2027 Buildout Traffic Model Results

Without the Development

With the Development

Northern Lights With the Development - 2027 Buildout - Intersection 1							
	\checkmark	4	\dagger	\dagger	\downarrow	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Confgurations	\%		b			\uparrow	
Traffic Volume (veh/h)	11	6	375	19	9	336	
Future Volume (Vehh)	11	6	375	19	9	336	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly fow rate (vph)	12	7	408	21	10	365	
Pedestrians							
Lane Wioth (t)							
Walking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type			None			None	
Median storage veh)							
Usosteam sional (it)							
pX, plation unblocked							
vC, conficing volume	804	418			429		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	804	418			429		
C. C , single (s)	6.4	6.2			4.1		
C.C, 2 stage (s)							
F (s)	3.5	3.3			2.2		
p0 queve free \%	97	99			99		
cM capacity (veh/h)	349	635			1130		
Direction, Lane \#	WB1	NB1	SB1				
Volume Total	19	429	375				
Volume Lef	12	0	10				
Volume Right	7	21	0				
CSH	419	1700	1130				
Volume to Capacity	0.05	0.25	0.01				
Queve Lengh 95 m (t)	4	0	1				
Cortol Delay (s)	14.0	0.0	0.3				
Lane LOS	B		A				
Approach Delay (s)	14.0	0.0	0.3				
Approach LOS	B						
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Ufitization			34.9\%		ICU Level	Service	A
Andysis Period (min)			15				

Without the Development

Northern Lights Without the Development - 2027 Buildout - Intersection 2

	\rangle						4	\dagger	+		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuratons		¢			¢			¢			*	
Traffic Volume (veh/h)	5	399	7	2	444	15	5	2	7	13	2	8
Future Volume (Veh/h)	5	399	7	2	444	15	5	2	7	13	2	8
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly fow rate (vph)	5	434	8	2	483	16	5	2	8	14	,	9
Pedestrins												
Lane Wioth (t)												
Naking Speed (t/s)												
Percent Blockage												
Right tum fare (veh)												
Median type		None			None							
Median storage veh)												
Usstream sional (t)												
bX, platoon unblocked												
VC, conficing volume	499			442			953	951	438	952	947	491
VC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	499			442			953	951	438	952	947	491
C. single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
C, 2 stage (s)												
F (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queve free \%	100			100			98	99	99	94	99	98
cM capacity (veh/h)	1065			1118			233	258	619	234	259	578
Direction, Lane \#	EB 1	WB 1	NB1	SB 1								
Volume Total	447	501	15	25								
Volume Let	5	2	5	14								
Volume Right	8	16	8	9								
CSH	1065	1118	356	300								
Volume to Capacity	0.00	0.00	0.04	0.08								
Queve Lengh 95\% (t)	0	0	3	7								
Cortol Delay (s)	0.1	0.1	15.6	18.1								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.1	0.1	15.6	18.1								
Approach LOS			c	c								
Intersection Summary												
Average Delay			0.8									
Intersection Capacity Ufitzation			35.4\%		U Level	Service			A			
Analysis Period (min)			15									

With the Development

Northern Lights With the Development - 2027 Buildout - Intersection 2												
			\geqslant		\leftarrow	4		\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuratons		\$			\&			\$			+	
Traffic Volume (veh/h)	8	399	7	2	444	26	5	3	7	17	3	10
Fuutre Volume (Vehh)	8	399	7	2	444	26	5	3	7	17	3	10
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly fow rate (vph)	9	434	8	2	483	28	5	3	8	18	3	11
Pedestrians												
Lane Widh (t)												
Nalking Speed (t/s)												
Percent Blockage												
Right wm fare (veh)												
Median type		None			None							
Median storage veh)												
Uostream sional (t)												
pX, platioon unblocked												
VC, conficing volume	511			442			970	971	438	966	961	497
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	511			442			970	971	438	966	961	497
C, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
C, 2 stage (s)												
F (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queve free \%	99			100			98	99	99	92	99	98
cM capacity (veh/h)	1054			1118			224	250	619	227	254	573
Direction, Lane \#	EB1	WB1	NB1	SB1								
Volume Total	451	513	16	32								
Volume Lef	9	2	5	18								
Volume Right	8	28	8	11								
CSH	1054	1118	339	290								
Volume to Capacity	0.01	0.00	0.05	0.11								
Queve Lengt 95m (t)	1	0	4	9								
Control Delay (s)	0.3	0.1	16.1	18.9								
Lane LOS	A	A	C	C								
Approach Delay (s)	0.3	0.1	16.1	18.9								
Approach LOS			c	c								
Intersection Summary												
Average Delay			1.0									
Intersection Capacity Ufifzation			37.1\%		CU Level	Service			A			
Analysis Period (min)			15									

Without the Development

Northern Lights Without the Development - 2027 Buildout - Intersection 3

With the Development

Northern Lights With the Development - 2027 Buildout - Intersection 3							
		\checkmark	4		\downarrow		
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Confguratons	\%			*	b		
Traffic Volume (veh/h)	3	8	16	3	5	3	
Future Volume (Veh/h)	3	8	16	3	5	3	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly fow rate (vph)	3	9	17	3	5	3	
Pedestrians							
Lane Wioth (t)							
Walking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type				None	None		
Median storage veh)							
Usstream sional (t)							
eX, platoon unblocked							
VC, conficing volume	44	6	8				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	44	6	8				
C. single (s)	6.4	6.2	4.1				
C, 2 stage (s)							
F (s)	3.5	3.3	2.2				
poqueve free \%	100	99	99				
cM capacity (veh/h)	957	1076	1612				
Direction, Lane \#	EB1	NB1	SB1				
Volume TotalVolume Left	12	20	8				
	3	17	0				
Volume Right	9	0	3				
CSH	1044	1612	1700				
Volume to Capacity	0.01	0.01	0.00				
Queve Lengh 95 m (t)	1	1	0				
Contol Delay (s)	8.5	6.2	0.0				
	A	A					
Approach Delay (s)	8.5	6.2	0.0				
Approach LOS	A						
Intersection Summary							
Average Delay			5.6				
Intersection Capacity Ufitization			17.7\%		CU Level of	Service	A
Andysis Period (min)			15				

With the Development

With the Development

XV. Appendix E: 2047 Horizon Year Traffic Analysis

Without the Development

With the Development

Northern Lights with the Development - 2047 Horizon Year - Intersection 1							
			9		\downarrow	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Confyuratons	\%		1			\uparrow	
Iraffic Volume (veh/h)	18	9	625	32	15	561	
Future Volume (Veh/h)	18	9	625	32	15	561	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly fow rate (vah)	20	10	679	35	16	610	
Pedestrians							
Lane Wioth (t)							
Nalking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type			None			None	
Median storage veh) None							
Jostream sional (t)							
px, platoon unblocked							
dC, conficing volume	1338	696			714		
VC1, stage 1 conf vol							
c/2, stage 2 conf vol							
Clu , unblocked val	1338	696			714		
C, single (s)	6.4	6.2			4.1		
C, 2 stage (s)							
F (s)	3.5	3.3			2.2		
D0 queve free \%	88	98			98		
EM capacity (veh/h)	166	441			886		
Direction, Lane \#	WB 1	NB1	SB1				
Volume Total	30	714	626				
Volume Lef	20	0	16				
/olume Right	10	35	0				
SSH	209	1700	886				
/olume to Capacity	0.14	0.42	0.02				
Queve Lengh 95m (t)	12	0	1				
Cortol Delay (s)Lane LOS	25.1	0.0	0.5				
	D		A				
ane LOS Approach Delay (s)	25.1	0.0	0.5				
Approach Delay (s) Approach LOS	D						
Intersection Summary							
Average Delay			0.8				
ntersection Capacity Utilizaton			51.6\%		CU Level of	Service	A
Andysis Period (min)			15				

Without the Development

Northern Lights without the Development - 2047 Horizon Year - Intersection 2												
			\geqslant			4		\dagger		-		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Confgurations		\$			\&			\$			¢	
Traffic Volume (veh $/$)	8	665	11	3	741	25	8	3	11	22	,	14
Futre Volume (Vehh)	8	665	11	3	741	25	8	3	11	22	3	14
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly fow rate (voh)	9	723	12	3	805	27	9	3	12	24	3	15
Pedestrians												
Lane Widh (t)												
Waking Speed (t/s)												
Percent Blockage												
Right tum fare (veh)												
Median type		None			None							
Median storage veh)												
Uostream sional (t)												
pX, platoon unblocked												
vC, conficing volume	832			735			1588	1585	729	1585	1578	818
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
$\mathrm{vCu}^{\text {a }}$, unblocked vol	832			735			1588	1585	729	1585	1578	818
${ }^{\text {t }}$ C, s. single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
FF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queve free \%	99			100			89	97	97	71	97	96
cM capacity (veh/h)	801			870			81	107	423	82	108	376
Direction, Lane \#	EB1	WB1	NB1	SB1								
Volume Total	744	835	24	42								
Volume Lef	9	,	9	24								
Volume Right	12	27	12	15								
CSH	801	870	143	117								
Volume to Capacity	0.01	0.00	0.17	0.36								
Queve Lengh 95\% (t)	1	0	15	36								
Cortol Delay (s)	0.3	0.1	35.1	52.1								
Lane LOS	A	A	E	F								
Approach Delay (s)	0.3	0.1	35.1	52.1								
Approach LOS			E	F								
Intersection Summary												
Average Delay Intersection Capacity Utization			2.0									
			52.5\%		Level	Service			A			
Analysis Period (min)			15									

With the Development
Northern Lights with the Development - 2047 Horizon Year - Intersection 2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configuratons		*			*			*			*	
Trafic Volume (veh/h)	11	665	11	3	741	36	8	4	11	26	4	16
Future Volume (Veh/h)	11	665	11	3	741	36	8	4	11	26	4	16
Sign Cortrol		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly fow rate (vph)	12	723	12	3	805	39	9	4	12	28	4	17
Pedestrians												
ane Widh (t)												
Nalking Speed (t/s)												
Percent Blockage												
Right um fare (veh)												
Median type		None			None							
Median storage veh)												
Jostream signal (t)												
DX, plation unblocked												
vC, conficing volume	844			735			1602	1603	729	1598	1590	824
$\mathrm{VC1}$, stage 1 conf vol												
cC2, stage 2 conf vol												
vCu, unblocked vol	844			735			1602	1603	729	1598	1590	824
C. single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
C, 2 stage (s)												
F(s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queve free \%	98			100			88	96	97	65	96	95
EM capacity (veh/h)	792			870			78	104	423	80	106	373
Direction, Lane \#	EB1	WB1	NB1	SB1								
Volume Total	747	847	25	49								
Volume Lef	12	3	9	28								
/olume Right	12	39	12	17								
SSH	792	870	137	113								
/olume to Capacity	0.02	0.00	0.18	0.43								
Queve Lengh 95\% (t)	1	0	16	47								
Cortrol Delay (s)	0.4	0.1	37.1	59.4								
ane LOS	A	A	E	F								
Approach Delay (s)	0.4	0.1	37.1	59.4								
Approach LOS			E	F								

ntersection Summary

Average Delay	2.5
ntersection Capacity Utilzation	54.6%

Without the Development

Northern Lights without the Development - 2047 Horizon Year - Intersection 3							
	4	\geqslant	4	\dagger	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Confguratons	\%			\uparrow	b		
Traffic Volume (veh/h)	3	3	3	6	8	3	
Fuutre Volume (Vehh)	3	3	3	6	8	3	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly fow rate (voh)	3	3	3	7	9	3	
Pedestrians							
Lane Wioth (t)							
Naking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type				None	None		
Median storage veh)							
Usostream sional (i)							
pX, platoon unblocked							
vC, conficing volume	24	10	12				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
$\mathrm{vCu}^{\text {a }}$, unblocked vol	24	10	12				
C. single (s)	6.4	6.2	4.1				
$\begin{array}{llll}\text { C, } 2 \text { stage (s) } & \text { c. } & \\ \text { C, }\end{array}$							
F (s)	3.5	3.3	2.2				
po queue free \%	100	100	100				
cM capacity (veh/h)	991	1071	1607				
Direction, Lane \#	EB1	NB1	SB 1				
Volume Total	6	10	12				
Volume Lef	3	3	0				
Volume Right	3	0	3				
CSH	1029	1607	1700				
Volume to Capacity	0.01	0.00	0.01				
Queve Lengh 95th (t)	0	0	0				
Contol Delay (s)	8.5	2.2	0.0				
Lane LOS	A	A					
Approach Delay (s)	8.5	2.2	0.0				
Approach LOS	A						
Intersection Summary							
Average Delay			2.6				
Intersection Capacity Utilization			13.3\%		CU Level of	Service	A
Andysis Period (min)			15				

With the Development
Northern Lights with the Development - 2047 Horizon Year - Intersection 3

With the Development

Northern Lights with the Development - 2047 Horizon Year - Intersection 4							
		\geqslant	t		4		
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Confguratons	b			\uparrow	\%		
Traffic Volume (veh/h)	,	1	8	13	1	4	
Future Volume (Veh/h)	9	1	8	13	1	4	
Sign Cortrol	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly fow rate (vph)	10	1	9	14	1	4	
Pedestrians							
Lane Widh (t)							
Walking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type	None			None			
Median storage veh)							
Uostream sional (t)							
pX, platoon unblocked							
vC, conficing volume			11		42	10	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			11		42	10	
C. , single (s)			4.1		6.4	6.2	
C.C, 2 stage (s)							
F (s)			2.2		3.5	3.3	
P0 queve free \%			99		100	100	
cM capacity (veh/h)			1608		963	1071	
Direction, Lane \#	EB1	WB 1	NB1				
Volume Total	11	23	5				
Volume Lef	0	9	1				
Volume Right	1	0	4				
cSH	1700	1608	1047				
Volume to Capacity	0.01	0.01	0.00				
Queve Lengt 95m (t)	0	0	0				
Control Delay (s)	0.0	2.9	8.5				
Lane LOS		A	A				
Approach Delay (s)	0.0	2.9	8.5				
Approach LOS			A				
Intersection Summary							
Average Delay			2.8				
Intersection Capacity Ufitration			17.8\%		ICU Level of	Service	A
Andysis Period (min)			15				

With the Development

Northern Lights with the Development - 2047 Horizon Year - Intersection 5							
		\geqslant			4		
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Confguratons	6			\uparrow	\%		
Traffic Volume (veh/h)	7	1	7	14	1	3	
Future Volume (Veh/h)	7	1	7	14	1	3	
Sign Control	Free			Free	Stop		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly fow rate (vph)	8	1	8	15	1	3	
Pedestrians							
Lane Wioth (t)							
Walking Speed (t/s)							
Percent Blockage							
Right tum fare (veh)							
Median type	None			None			
Median storage veh)							
Usstream signal (t)							
dX, platoon unblocked							
VC, conficing volume			9		40	8	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			9		40	8	
C. single (s)			4.1		6.4	6.2	
C, 2 stage (s)							
F (s)			2.2		3.5	3.3	
b0 queve free \%			100		100	100	
cM capacity (veh/h)			1611		967	1073	
Direction, Lane \#	EB1	WB1	NB1				
Volume Total	9	23	4				
Volume Let	0	8	1				
Volume Right	1	0	3				
CSH	1700	1611	1045				
Volume to Capacity	0.01	0.00	0.00				
Queve Lengh 95 m (t)	0	0	0				
Control Delay (s)	0.0	2.5	8.5				
Lane LOS		A	A				
Approach Delay (s)	0.0	2.5	8.5				
Approach LOS			A				
Intersection Summary							
Average Delay			2.6				
Intersection Capacity Ufilization			16.9\%		ICU Level of	Service	A
Analvsis Penod (min)			15				

Intersection 2-2047 Mitigation Measures

Northern Lights - 2047 Mitigation Measures - Intersection 2												
			\geqslant	\downarrow		4		\uparrow		\checkmark	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Confguratons	\dagger	\dagger		\%	\uparrow	7	\dagger	4	7	\%	4	1
Iraffic Volume (veh/h)	8	665	11	3	741	25	8	3	11	22	3	14
Future Volume (Veh/h)	8	665	11	3	741	25	8	3	11	22	3	14
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly fow rate (vph)	9	723	12	3	805	27	9	3	12	24	3	15
Pedestrians												
Cane Wioth (t)												
Nalking Speed (t/s)												
Percent Blockage												
Vight tum fare (veh)												
Median type		TWLTL			TWLTL							
Median storage veh)		2			2							
Jostream sional (t)												
pX, platoon unblocked												
vC, conficíing volume	832			735			1574	1585	729	1566	1564	805
JC1, stage 1 conf vol							747	747		811	811	
-C2, stage 2 conf vol							828	838		754	753	
${ }^{2} \mathrm{Cu}$, unblocked val	832			735			1574	1585	729	1566	1564	805
C, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
C, 2 stage (s)							6.1	5.5		6.1	5.5	
F (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
P0 queve free \%	99			100			97	99	97	91	99	96
EM capacity (veh/h)	801			870			265	289	423	273	296	382
Direction, Lane \#	EB1	EB2	WB1	WB2	WB3	NB1	NB2	NB3	SB1	SB2	SB3	
Volume Total	9	735	3	805	27	9	3	12	24	3	15	
Volume Lef	9	0	3	0	0	9	0	0	24	0	0	
Volume Right	0	12	0	0	27	0	0	12	0	0	15	
SSH	801	1700	870	1700	1700	265	289	423	273	296	382	
/olume to Capacity	0.01	0.43	0.00	0.47	0.02	0.03	0.01	0.03	0.09	0.01	0.04	
Queve Lengh 95 m (t)	1	0	0	0	0	3	1	2	7	1	3	
Cortrol Delay (s)	9.5	0.0	9.2	0.0	0.0	19.1	17.6	13.8	19.5	17.3	14.8	
ane LOS	A		A			C	C	B	C	c	B	
Approach Delay (s)	0.1		0.0			16.2			17.7			
Approach LOS						C			c			
ntersection Summary												
Average Delay			0.8									
ntersection Capacity Ufilization			55.7\%		U Level	fervice			B			
Analvsis Period (min)			15									

XVI. Appendix F: Left Turn Lane Warrant Analyses

2 Check the plotted point(s) on the chart below against the anticpated intersection of major-road volume and peak-hour left-turn volume in the volume advancing.

Civilize, PLLC
https://civilize-my.sharepoint.com/personal/bcrowther_civilize_design/Documents/Civilize/Proj/Campbell Anne/Campbell Ranch/Campbell Design/400 Prelim/1000 Civil/TIS/TIS_Northern Lights 2023-03-06 v1-2.docx

2 Check the plotted point(s) on the chart below against the anticpated intersection of major-road volume and peak-hour left-turn volume in the volume advancing.

2 Check the plotted point(s) on the chart below against the anticpated intersection of major-road volume and peak-hour left-turn volume in the volume advancing.

XVII. Appendix G: Right Turn Lane Warrant Analyses

[^0]: https://civilize-my.sharepoint.com/personal/bcrowther_civilize_design/Documents/Civilize/Proj/Campbell Design/400 Prelim/1000 Civil/TIS/TIS_Northern Lights 2023-03-06 v1-2.docx

